How to cite this paper
Nayak, S & Mishra, P. (2016). Desirability function based optimization of experimental data for air-water spray impingement cooling.Management Science Letters , 6(3), 203-212.
Refrences
Aamir, M., Qiang, L., Xun, Z., Hong, W., & Zubair, M. (2014). Ultra-Fast Spray Cooling and Critical Droplet Daimeter Estimation from Cooling Rate. Journal of Power and Energy Engineering, 2(04), 259.
Abbasi, B., & Kim, J. (2011). Prediction of PF-5060 spray cooling heat transfer and critical heat flux. Journal of Heat Transfer, 133(10), 101504.
D?az, A. J., & Ortega, A. (2013). Investigation of a gas-propelled liquid droplet impinging onto a heated surface. International Journal of Heat and Mass Transfer, 67, 1181-1190.
Ebadian, M. A., & Lin, C. X. (2011). A review of high-heat-flux heat removal technologies. Journal of Heat Transfer, 133(11), 110801.
Estes, K. A. (1996). Optimizing and predicting CHF in spray cooling of a square surface. Journal of Heat Transfer, 118, 672-679.
Fabbri, M., & Dhir, V. K. (2005). Optimized heat transfer for high power electronic cooling using arrays of microjets. Journal of Heat Transfer, 127(7), 760-769.
Hou, Y., Liu, X., Liu, J., Li, M., & Pu, L. (2013). Experimental study on phase change spray cooling. Experimental Thermal and Fluid Science, 46, 84-88.
Hou, L., Cheng, H., Li, J., Li, Z., Shao, B., & Hou, J. (2012). Study on the cooling capacity of different quenchant. Procedia Engineering, 31, 515-519.
Mart?nez-Galv?n, E., Ant?n, R., Ramos, J. C., & Khodabandeh, R. (2013). Effect of the spray cone angle in the spray cooling with R134a. Experimental Thermal and Fluid Science, 50, 127-138.
Naz, M. Y., Sulaiman, S. A., Ariwahjoedi, B., & Ku Shaari, K. Z. (2013). Investigation of vortex clouds and droplet sizes in heated water spray patterns generated by axisymmetric full cone nozzles. The Scientific World Journal, 2013.
Pautsch, A. G., & Shedd, T. A. (2005). Spray impingement cooling with single-and multiple-nozzle arrays. Part I: Heat transfer data using FC-72. International Journal of Heat and Mass Transfer, 48(15), 3167-3175.
Ravikumar, S. V., Jha, J. M., Sarkar, I., Mohapatra, S. S., Pal, S. K., & Chakraborty, S. (2013). Achievement of ultrafast cooling rate in a hot steel plate by air-atomized spray with different surfactant additives. Experimental Thermal and Fluid Science, 50, 79-89.
Ravikumar, S. V., Jha, J. M., Tiara, A. M., Pal, S. K., & Chakraborty, S. (2014). Experimental investigation of air-atomized spray with aqueous polymer additive for high heat flux applications. International Journal of Heat and Mass Transfer,72, 362-377.
Seraj, M. M., & Gadala, M. S. (2013, January). Wetting Front Propagation during Quenching of Aluminum Plate by Water Spray. In Proceedings of World Academy of Science, Engineering and Technology (No. 78, p. 858). World Academy of Science, Engineering and Technology (WASET).
Wendelstorf, J., Spitzer, K. H., & Wendelstorf, R. (2008). Spray water cooling heat transfer at high temperatures and liquid mass fluxes. International Journal of Heat and Mass Transfer, 51(19), 4902-4910.
Abbasi, B., & Kim, J. (2011). Prediction of PF-5060 spray cooling heat transfer and critical heat flux. Journal of Heat Transfer, 133(10), 101504.
D?az, A. J., & Ortega, A. (2013). Investigation of a gas-propelled liquid droplet impinging onto a heated surface. International Journal of Heat and Mass Transfer, 67, 1181-1190.
Ebadian, M. A., & Lin, C. X. (2011). A review of high-heat-flux heat removal technologies. Journal of Heat Transfer, 133(11), 110801.
Estes, K. A. (1996). Optimizing and predicting CHF in spray cooling of a square surface. Journal of Heat Transfer, 118, 672-679.
Fabbri, M., & Dhir, V. K. (2005). Optimized heat transfer for high power electronic cooling using arrays of microjets. Journal of Heat Transfer, 127(7), 760-769.
Hou, Y., Liu, X., Liu, J., Li, M., & Pu, L. (2013). Experimental study on phase change spray cooling. Experimental Thermal and Fluid Science, 46, 84-88.
Hou, L., Cheng, H., Li, J., Li, Z., Shao, B., & Hou, J. (2012). Study on the cooling capacity of different quenchant. Procedia Engineering, 31, 515-519.
Mart?nez-Galv?n, E., Ant?n, R., Ramos, J. C., & Khodabandeh, R. (2013). Effect of the spray cone angle in the spray cooling with R134a. Experimental Thermal and Fluid Science, 50, 127-138.
Naz, M. Y., Sulaiman, S. A., Ariwahjoedi, B., & Ku Shaari, K. Z. (2013). Investigation of vortex clouds and droplet sizes in heated water spray patterns generated by axisymmetric full cone nozzles. The Scientific World Journal, 2013.
Pautsch, A. G., & Shedd, T. A. (2005). Spray impingement cooling with single-and multiple-nozzle arrays. Part I: Heat transfer data using FC-72. International Journal of Heat and Mass Transfer, 48(15), 3167-3175.
Ravikumar, S. V., Jha, J. M., Sarkar, I., Mohapatra, S. S., Pal, S. K., & Chakraborty, S. (2013). Achievement of ultrafast cooling rate in a hot steel plate by air-atomized spray with different surfactant additives. Experimental Thermal and Fluid Science, 50, 79-89.
Ravikumar, S. V., Jha, J. M., Tiara, A. M., Pal, S. K., & Chakraborty, S. (2014). Experimental investigation of air-atomized spray with aqueous polymer additive for high heat flux applications. International Journal of Heat and Mass Transfer,72, 362-377.
Seraj, M. M., & Gadala, M. S. (2013, January). Wetting Front Propagation during Quenching of Aluminum Plate by Water Spray. In Proceedings of World Academy of Science, Engineering and Technology (No. 78, p. 858). World Academy of Science, Engineering and Technology (WASET).
Wendelstorf, J., Spitzer, K. H., & Wendelstorf, R. (2008). Spray water cooling heat transfer at high temperatures and liquid mass fluxes. International Journal of Heat and Mass Transfer, 51(19), 4902-4910.