How to cite this paper
Kabirbeyk, F., Harounabadi, A & Sabzekar, M. (2015). A fuzzy method for improving the functionality of search engines based on user & quot; s web interactions.Management Science Letters , 5(4), 377-386.
Refrences
Azimpour-Kivi, M., & Azmi, R. (2011, June). A webpage similarity measure for web sessions clustering using sequence alignment. In Artificial Intelligence and Signal Processing (AISP), 2011 International Symposium on (pp. 20-24). IEEE.
Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers.
Castellano, G., Mesto, F., Minunno, M., & Torsello, M. A. (2007). Web user profiling using fuzzy clustering. In Applications of Fuzzy Sets Theory (pp. 94-101). Springer Berlin Heidelberg.
Castellano, G., Fanelli, A. M., & Torsello, M. A. (2006, September). Mining usage profiles from access data using fuzzy clustering. In Proceedings of the 6th WSEAS International Conference on SIMULATION, MODELLING AND OPTIMIZATION (SMO & apos; 06) (pp. 157-160).
Castellano, G., Fanelli, A. M., Plantamura, P., & Torsello, M. A. (2008, July). A Neuro-Fuzzy Strategy for Web Personalization. In AAAI (pp. 1784-1785).
Castellano, G., Fanelli, A. M., & Torsello, M. A. (2011). NEWER: A system for NEuro-fuzzy WEb Recommendation. Applied Soft Computing, 11(1), 793-806.
Chitraa, V. & Davamani, A. S. (2010). A survey on preprocessing methods for web usage data. International Journal of Computer Science and Information Security, 7(3), 78-83.
Forsati, R. & Meybodi, M. R. (2008). An algorithm based on structure of connected pages and information of users for suggesting web pages. The second Iran data mining conference, industrial Amir Kabir university.
G?ksedef, M., & Gündüz-??üdücü, ?. (2010). Combination of Web page recommender systems. Expert Systems with Applications, 37(4), 2911-2922.
Kansara, N. & Mishara, S. (2013). An improved fuzzy clustering technique for user’s browsing behaviors. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 2(2), 2278-6856.
Maheswari, B. U., & Sumathi, P. (2014, February). A New Clustering and Preprocessing for web log mining. In Computing and Communication Technologies (WCCCT), 2014 World Congress on (pp. 25-29). IEEE.
Mobasher, B., Dai, H., Luo, T., & Nakagawa, M. (2001, November). Effective personalization based on association rule discovery from web usage data. InProceedings of the 3rd international workshop on Web information and data management (pp. 9-15). ACM.
Qaderian, M. (2008). Improving user model in website automatically by using semantics of specific degree of concepts. M.A. Thesis, Amir Kabir University, information technology and computer engineering faculty.
Rajabi, S., Harounabadi, A., & Aghazarian, V. (2014). A recommender system for the Web: Using user profile and machine learning methods. International Journal of Computer Applications, 96(11), 8875-8887.
Santra, A. K., & Jayasudha, S. (2012). Classification of web log data to identify interested users using Naïve Bayesian classification. International Journal of Computer Science Issues, 9(1), 381-387.
Suresh, K., MadanaMohana, R., RamaMohan Reddy, A., & Subramanyam, A. (2011, May). Improved fcm algorithm for clustering on web usage mining. InComputer and Management (CAMAN), 2011 International Conference on (pp. 1-4). IEEE.
Thakare, S. B., & Gawali, S. Z. (2010). A effective and complete preprocessing for Web Usage Mining. International Journal on Computer Science and Engineering, 2(03), 848-851.
Tyagi, N. K., Solanki, A. K., & Wadhwa, M. (2010). Analysis of server log by web usage mining for website improvement. International Journal of Computer Science Issues, 7(4), 17-21.
Valera, M., & Chauhan, U. (2013, July). An efficient web recommender system based on approach of mining frequent sequential pattern from customized web log preprocessing. In 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.
Verma, V., Verma, A. K., & Bhatia, S. S. (2011). Comprehensive Analysis of Web Log Files for Mining. IJCSI International Journal of Computer Science Issues, 8(6). 199-202.
Zhong, J., & Li, X. (2010). Unified collaborative filtering model based on combination of latent features. Expert Systems with Applications, 37(8), 5666-5672.
Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers.
Castellano, G., Mesto, F., Minunno, M., & Torsello, M. A. (2007). Web user profiling using fuzzy clustering. In Applications of Fuzzy Sets Theory (pp. 94-101). Springer Berlin Heidelberg.
Castellano, G., Fanelli, A. M., & Torsello, M. A. (2006, September). Mining usage profiles from access data using fuzzy clustering. In Proceedings of the 6th WSEAS International Conference on SIMULATION, MODELLING AND OPTIMIZATION (SMO & apos; 06) (pp. 157-160).
Castellano, G., Fanelli, A. M., Plantamura, P., & Torsello, M. A. (2008, July). A Neuro-Fuzzy Strategy for Web Personalization. In AAAI (pp. 1784-1785).
Castellano, G., Fanelli, A. M., & Torsello, M. A. (2011). NEWER: A system for NEuro-fuzzy WEb Recommendation. Applied Soft Computing, 11(1), 793-806.
Chitraa, V. & Davamani, A. S. (2010). A survey on preprocessing methods for web usage data. International Journal of Computer Science and Information Security, 7(3), 78-83.
Forsati, R. & Meybodi, M. R. (2008). An algorithm based on structure of connected pages and information of users for suggesting web pages. The second Iran data mining conference, industrial Amir Kabir university.
G?ksedef, M., & Gündüz-??üdücü, ?. (2010). Combination of Web page recommender systems. Expert Systems with Applications, 37(4), 2911-2922.
Kansara, N. & Mishara, S. (2013). An improved fuzzy clustering technique for user’s browsing behaviors. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 2(2), 2278-6856.
Maheswari, B. U., & Sumathi, P. (2014, February). A New Clustering and Preprocessing for web log mining. In Computing and Communication Technologies (WCCCT), 2014 World Congress on (pp. 25-29). IEEE.
Mobasher, B., Dai, H., Luo, T., & Nakagawa, M. (2001, November). Effective personalization based on association rule discovery from web usage data. InProceedings of the 3rd international workshop on Web information and data management (pp. 9-15). ACM.
Qaderian, M. (2008). Improving user model in website automatically by using semantics of specific degree of concepts. M.A. Thesis, Amir Kabir University, information technology and computer engineering faculty.
Rajabi, S., Harounabadi, A., & Aghazarian, V. (2014). A recommender system for the Web: Using user profile and machine learning methods. International Journal of Computer Applications, 96(11), 8875-8887.
Santra, A. K., & Jayasudha, S. (2012). Classification of web log data to identify interested users using Naïve Bayesian classification. International Journal of Computer Science Issues, 9(1), 381-387.
Suresh, K., MadanaMohana, R., RamaMohan Reddy, A., & Subramanyam, A. (2011, May). Improved fcm algorithm for clustering on web usage mining. InComputer and Management (CAMAN), 2011 International Conference on (pp. 1-4). IEEE.
Thakare, S. B., & Gawali, S. Z. (2010). A effective and complete preprocessing for Web Usage Mining. International Journal on Computer Science and Engineering, 2(03), 848-851.
Tyagi, N. K., Solanki, A. K., & Wadhwa, M. (2010). Analysis of server log by web usage mining for website improvement. International Journal of Computer Science Issues, 7(4), 17-21.
Valera, M., & Chauhan, U. (2013, July). An efficient web recommender system based on approach of mining frequent sequential pattern from customized web log preprocessing. In 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.
Verma, V., Verma, A. K., & Bhatia, S. S. (2011). Comprehensive Analysis of Web Log Files for Mining. IJCSI International Journal of Computer Science Issues, 8(6). 199-202.
Zhong, J., & Li, X. (2010). Unified collaborative filtering model based on combination of latent features. Expert Systems with Applications, 37(8), 5666-5672.