How to cite this paper
AlAmayreh, E., Almajali, D., AlSmadi, L., Masadeh, R., Al-Sherideh, A & Majali, S. (2023). Antecedents of understanding the investors’ acceptance of artificial intelligence: Perceptions from Jordanian context.International Journal of Data and Network Science, 7(4), 1861-1874.
Refrences
Abbasi, G.A., Tiew, L.Y., Tang, J., Goh, Y.N., & Thurasamy, R. (2021). The adoption of cryptocurrency as a disruptive force: Deep learning-based dual stage structural equation modelling and artificial neural network analysis. Plos One, 16(3), e0247582. https://doi.org/10.1371/journal.pone.0247582
Aboelmaged, M., & Gebba, T.R. (2013). Mobile banking adoption: An examination of technology acceptance model and theory of planned behavior. International Journal of Business Research and Development, 2(1), 35-50.
Alcántara-Pilar, J. M., & Del Barrio-García, S. (2015). Antecedents of attitudes toward the website: the moderating role of long-term orientation and individualism. Cross Cultural Management, 22(3), 379-404.
Abu Daqar, M.A.M., & Smoudy, A.K. (2019). The role of artificial intelligence on enhancing customer experience. Inter-national Review of Management and Marketing, 9(4), 22-31. doi:10.32479/IRMM.8166.
Agarwal, R., & Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorption and beliefs about infor-mation technology usage. MIS Quarterly, 24(4), 665-669.
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179.
Al-Bashayreh, M., Almajali, D., Al-Okaily, M., & Samed Al-Adwan, A. (2022). Evaluating electronic customer relation-ship management system success: The mediating role of customer satisfaction. Sustainability, 14(19), 12310.
Aldas-Manzano, J., Ruiz-Mafe, C., Sanz-Blas, S., & Lassala-Navarre, C. (2011). Internet banking loyalty: Evaluating the role of trust, satisfaction, perceived risk and frequency of use. The Service Industries Journal, 31(7), 1165-1190.
Almajali, D. (2021). Diagnosing the effect of green supply chain management on firm performance: An experiment study among Jordan industrial estates companies. Uncertain Supply Chain Management, 9(4), 897-904. https://doi.org/10. 5267/j.uscm.2021.7.012
Almajali, D., & Dahalin, Z. (2010). IT-business strategic alignment gap and sustainable competitive advantage in Jordan: Triangulation approach. Proceeding of the 15 IBIMA conference on innovation and knowledge management in Busi-ness: A Business Competitive Edge Perspective,394–405, Cairo.
Almajali, D., Majali, Al-Bashayreh, M., & Altamimi, A. (2023). Antecedents of acceptance model for e-procurement in Jordanian public shareholding firms. Journal of Consumer Marketing, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/JCM-12-2021-5075
Almajali, D., Omar, F., Alsokkar, A., Alsherideh, A., & Dahalin, Z. (2022). Enterprise resource planning success in Jordan from the perspective of IT-Business strategic alignment. Cogent Social Sciences, 8(1), 2062095. https://doi.org/10. 1080/23311886.2022.2062095
Alsajjan, B., & Dennis, C. (2010). Internet banking acceptance model: Cross-market examination. Journal of Business Re-search, 63(9-10), 957-963.
AL-Sous, N., Almajali, D., Al-Radaideh, A., Dahalin, Z., & Dwas, D. (2023). Integrated e-learning for knowledge man-agement and its impact on innovation performance among Jordanian manufacturing sector companies. International Journal of Data and Network Science, 7(1), 495-504.
Anderson, J.C., & Gerbing, D.W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.
Angeles, R., & Nath, R. (2007). Business-to-business e-procurement: Success factors and challenges to implementation. Supply Chain Management, 12(2), 104-115, doi: 10.1108/13598540710737299.
Aw, E.C.X., Tan, G., Cham, T.H., Raman, R., & and Ooi, K.B. (2022). Alexa, what’s on my shopping list? Transforming customer experience with digital voice assistants. Technological Forecasting and Social Change, 180, 121711. doi: 10.1016/j.techfore.2022.121711
Baabdullah, A.M., Alalwan, A., Algharabat, R., Metri, B., & and Rana, N. (2022). Virtual agents and flow experience: An empirical examination of AI-powered chatbots. Technological Forecasting and Social Change, 181, 121772. doi:10.1016/j.techfore.2022.121772.
Bagozzi, R.P. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the Association for Information Systems, 8(4), 244-254.
Bagozzi, R.P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94. https://doi.org/10. 1007/BF02723327
Belanche, D., Casaló, L.V., Flavián, C. (2019). Artificial intelligence in FinTech: Understanding robo-advisors adoption among customers. Industrial Management & Data Systems, 119(7), 1411-1430.
Bellé, N. (2013). Experimental evidence on the relationship between public service motivation and job perfor-mance. Public Administration Review, 73(1), 143-153.
Benamati, J.S., Serva, M.A., & Fuller, M.A. (2010). The productive tension of trust and distrust: The coexistence and rela-tive role of trust and distrust in online banking. Journal of Organizational Computing and Electronic Commerce, 20(4), 328-346.
Benbasat, I., & Barki, H. (2007). Quo vadis TAM? Journal of the Association for Information Systems, 8(4), 77-89.
Brill, T. M., Munoz, L., & Miller, R. J. (2019). Siri, Alexa, and other digital assistants: a study of customer satisfaction with artificial intelligence applications. Journal of Marketing Management, 35(15-16), 1401-1436. https://doi.org/10.1080/0267257X.2019.1687571
Brandon-Jones, A. (2017). E-procurement quality from an internal customer perspective: Construct development, refine-ment, and replication using a mixed-methods approach. International Journal of Operations and Production Manage-ment, 37(12), 1741-1772, doi: 10.1108/ IJOPM-08-2016-0480.
Byrne, B. (2010). Structural equation modeling with AMOS: Basic concepts, applications and programming (6th ed.). Taylor & Francis Group.
Chemingui, H. (2013). Resistance, motivations, trust and intention to use mobile financial services. International Journal of Bank Marketing, 31(7), 574-592.
Cheung, F.M., Leung, K., Zhang, J.X., Sun, H.F., Gan, Y.Q., Song, W.Z., & Xie, D. (2001). Indigenous Chinese personality constructs: Is the five-factor model complete?. Journal of cross-cultural psychology, 32(4), 407-433.
Davis, B.G. (1993). Tools for Teaching, 2nd Eds. Available on http://ngc.digitallibrary.co.in/bitstream/123456789/208/1/Tools%20for%20Teaching.pdf
Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance. MIS Quarterly, 13(3), 319-340.
Duan, Y., He, Q., Feng, W., Li, D., & Fu, Z. (2010). A study on e-learning take-up intention from an innovation adoption perspective: A case in China. Computers & Education, 55(1), 237-246.
Ersoy, A.B. (2022). Artificial intelligence (AI) applications in on-line shopping in India. African Journal of Marketing Management, 14(1). doi:10.5897/AJMM2021.0696.
Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Read-ing, Mass: Addison-Wesley.
Guha, A., Grewal, D., Kopalle, P., Haenlein, M., Schneider, M…Hawkins, G. (2021). How artificial intelligence will affect the future of retailing. Journal of Retailing, 97(1). doi:10.1016/j.jretai.2021.01.005.
Gupta, K.P., Manrai, R., & Goel, U. (2019). Factors influencing adoption of payments banks by Indian customers: Extend-ing UTAUT with perceived credibility. Journal of Asia Business Studies, 13(2), 173-195.
Gunasekaran, A., McGaughey, R.E., Ngai, E.W.T., & Rai, B.K. (2009). E-procurement adoption in the Southcoast SMEs. International Journal of Production Economics, 122(1), doi: 10.1016/j.ijpe.2009.05.013.
Ha, I., Yoon, Y., & Choi, M. (2007). Determinants of adoption of mobile games under mobile broadband wireless access environment. Information & Management, 44(3), 276-286.
Ha, J.H., Kim, S.Y., Bae, S.C., Bae, S., Kim, H., Sim, M., ... & Cho, S.C. (2007). Depression and Internet addiction in ado-lescents. Psychopathology, 40(6), 424-430.
Hair, J.F., Black, W.C., Babin, B.J., & Anderson, R.E. (2010). Multivariate data analysis: A global perspective (7th ed.). Pearson Education International.
Harman, H.H. (1976). Modern factor analysis (3rd ed.). University of Chicago Press.
Holmes-Smith, P., Coote, L., & Cunningham, E. (2006). Structural equation modelling: From the fundamentals to ad-vanced topics. School Research, Evaluation and Measurement Services.
Hsu, C.L., & Lin, J.C. (2023). Understanding the user satisfaction and loyalty of customer service chatbots. Journal of Re-tailing and Consumer Services, 71, 103211. doi:10.1016/J.JRETCONSER.2022.103211.
Hsu, C.L., & Lu, H.P. (2007). Consumer behavior in online game communities: A motivational factor perspective. Com-puters in Human Behavior, 23(3), 1642-1659.
Jordan Stock Market (2023). Available on https://tradingeconomics.com/jordan/stock-market
Jung, D., Dorner, V., Glaser, F., & Morana, S. (2018b). Robo-advisory. Business & Information Systems Engineering, 60(1), 81-86.
Jung, D., Dorner, V., Weinhardt, C., & Pusmaz, H. (2018a). Designing a Robo-advisor for risk-Averse, low-budget con-sumers. Electronic Markets, 28(3), 367-380.
Jung, D., Glaser, F., & Köpplin, W. (2019). Robo-advisory: Opportunities and risks for the future of financial advisory. In: Advances in Consulting Research, ed. V. Nissen (1), 405-427. Cham: Springer.
Kaushik, A.K., Agrawal, A.K., Rahman, Z. (2015). Tourist behaviour towards self-service hotel technology adoption: Trust and subjective norm as key antecedents. Tourism Management Perspectives, 16, 278-289.
Kheng, C.B., & Al-Hawamdeh, S. (2002). The adoption of electronic procurement in Singapore. Electronic Commerce Re-search, 2(2), doi: 10.1023/A:1013388018056.
Kim, D.J., Ferrin, D.L., & Rao, H.R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544-564.
Kim, G., Shin, B., & Lee, H.G. (2009). Understanding dynamics between initial trust and usage intentions of mobile bank-ing. Information Systems Journal, 19(3), 283-311.
Kim, S., & Jin, B. (2002). Validating the retail service quality scale for US and Korean customers of discount stores: An exploratory study. Journal of Services Marketing, 16(3), 223-237.
King, L.A., Hicks, J.A., Krull, J.L., & Del Gaiso, A.K. (2006). Positive affect and the experience of meaning in life. Journal of Personality and Social Psychology, 90(1), 179.
Kline, R.B. (2005). Principles and practice of structural equation modelling. The Guilford Press.
Kline, R.B. (1998). Software review: Software programs for structural equation modeling: Amos, EQS, and LISREL. Journal of Psychoeducational Assessment, 16(4), 343-364. https://doi.org/10.1177/ 073428299801600407
Lari, H., Kuhu, V., & Manu, K.S. (2022). Artificial intelligence in e-commerce: Applications, implications and challeng-es. Asian Journal of Management, 13(3), 235-244. doi:10.52711/2321-5763.2022.00041.
Lee, J., Kao, H.A., & Yang, S. (2014). Service innovation and smart analytics for industry 4.0 and big data environment. Procedia Cirp, 16(1), 3-8.
Lee, Y., Kozar, K.A., & Larsen, K.R. (2003). The technology acceptance model: Past, present, and future. Communications of the Association for Information Systems, 12(1), 50.
Li, C., Runjie, P., Huiyu, X., Zhiwen, D., Chenzhuoer, L., Runjie, P., Huiyu, X., & Zhiwen, D. (2020). Research on artifi-cial intelligence customer service on consumer attitude and its impact during online shopping. JPhCS, 1575(1). doi:10.1088/1742-6596/1575/1/012192.
Liébana-Cabanillas, F., Marinkovic, V., de Luna, I.R., & Kalinic, Z. (2018). Predicting the determinants of mobile pay-ment acceptance: A hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129, 117-130.
Lin, C.J., Weng, R.C., & Keerthi, S.S. (2007). Trust region newton methods for large-scale logistic regression. In: Proceedings of the 24th international conference on Machine Learning, 1, 561-568.
Liu, B. (2011). Web data mining: Exploring hyperlinks, contents, and usage data (Vol. 1). Berlin: springer.
Liu, C., Ehsan, F., Tong, X., & Philip, S.Y. (2022). Recent advances in domain-driven data mining. International Journal of Data Science and Analytics, doi:10.1007/S41060-022-00378-1.
López-Nicolás, C., Molina-Castillo, F.J., & Bouwman, H. (2008). An assessment of advanced mobile services acceptance: Contributions from TAM and diffusion theory models. Information & Management, 45(6), 359-364.
Lucas, H.C., & Spitler, V.K. (1999). Technology use and performance: A field study of broker workstations. Decision Sci-ences, 30(2), 291-311.
Manrai, R., Goel, U., & Yadav, P.D. (2021). Factors affecting adoption of digital payments by semi-rural Indian women: extension of UTAUT-2 with self-determination theory and perceived credibility. Aslib Journal of Information Man-agement, 73(6), 814-838.
Masa’deh, R., Almajali, D.A., Almajali, M.R., Almajali, E.R., & Alshurideh, M.T. (2023). Factors Influencing Online Shopping During Fear of Covid-19 Pandemic in Jordan: A Conceptual Framework. In The Effect of Information Tech-nology on Business and Marketing Intelligence Systems (pp. 305-315). Cham: Springer International Publishing.
Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191.
Mazambani, L., & Mutambara, E. (2019). Predicting FinTech innovation adoption in South Africa: The case of cryptocur-rency. African Journal of Economic and Management Studies, 11(1), 30-50. https://doi.org/10. 1108/AJEMS-04-2019-0152
Moon, J.W., & Kim, Y.G. (2001). Extending the TAM for a worldwide-web context. Information & Management, 38(4), 217-230.
Moore, S., Sandy, B., & Jonathan, E. (2022). The social significance of AI in retail on customer experience and shopping practices. Journal of Retailing and Consumer Services, 64(January). doi:10.1016/J.JRETCONSER.2021.102755.
Moura, S., Reis, J.L., & Rodrigues, L. (2021). The Artificial Intelligence in the Personalisation of the Customer Journey – a Literature Review. CAPSI 2021 Proceedings, October. https://aisel.aisnet.org/capsi2021/28.
Nielsen, H., Brunak, S., & von Heijne, G. (1999). Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Engineering, 12(1), 3-9.
Nimbalkar, A.A., & Berad, A.T. (2021). The increasing importance of AI applications in e-commerce. International Inter-disciplinary Research Journal, 13(1), 388-391.
Nunnally, J.C., & Bernstein, I. (1978). Psychometric Theory. MacGraw-Hill.
Olsen, R. (2012). Trust: The underappreciated investment risks attribute. Journal of Behavioral Finance, 13(4), 308-313.
Park, J.Y., Ryu, J.P., & Shin, H.J. (2016). Robo advisors for portfolio management. Advanced Science and Technology Letters, 141, 104-108.
Pavlou, P.A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology ac-ceptance model. International Journal of Electronic Commerce, 7(3), 101-134.
Pavlou, P.A., & Fygenson, M. (2006). Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. MIS Quarterly, 30(1), 115-143.
Phoon, K., & Koh, F. (2017). Robo-advisors and wealth management. The Journal of Alternative Investments, 20(3), 79-94.
Podsakoff, P.M., MacKenzie, S.B., Lee, J.-Y., & Podsakoff, N.P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. https://doi.org/10.1037/ 0021-9010.88.5.879
Raue, M., D’Ambrosio, L.A., & Coughlin, J.F. (2020). The power of peers: Prompting savings behavior through social comparison. Journal of Behavioral Finance, 21(1), 1-13.
Reher, M., & Sun, C. (2016). Robo Advisers and Mutual Fund Stickiness. Unpublished manuscript, last modifed. https://pdfs.Seman ticscholar. org/75d1/7b81485eaf6a6f6a214242a6dfdc7bf9ec59. pdf. Accessed, 1.
Reunis, M.R.B., van Raaij, E.M., & Santema, S.C. (2004). Actor-to-actor dissemination of electronic procurement (EP) adoption: An exploration of influencing factors. Journal of Purchasing and Supply Management, 10, 4-5, doi: 10.1016/j.pursup.2004.10.002.
Rogers, E.M. (2003). Diffusion of Innovations, 5th edition, the free press. New York: The division of Mc Millin Company.
Schmidt-Belz, B. (2003, September). Aspects of user trust in mobile guides. In: Proc. Mobile HCI.
Shin, H., Casidy, R., Yoon, A., & Yoon, S.H. (2016). Brand trust and avoidance following brand crisis: A quasi-experiment on the effect of franchisor statements. Journal of Brand Management, 23(5), 1-23.
Tarhini, A., Arachchilage, N.A.G., & Abbasi, M.S. (2015). A critical review of theories and models of technology adop-tion and acceptance in information system research. International Journal of Technology Diffusion (IJTD), 6(4), 58-77.
Taylor, S., & Todd, P.A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176.
Toktas-Palut, P., Baylav, E., Teoman, S., & Altunbey, M. (2014). The impact of barriers and benefits of eprocurement on its adoption decision: an empirical analysis. International Journal of Production Economics, 158, 77-90, doi: 10.1016/J.IJPE.2014.07.017.
Vaidya, K., Sajeev, A.S.M., & Callender, G. (2006). Critical factors that influence e-procurement implementation success in the public sector. Journal of Public Procurement, 6(1/2), 70-99.
Varshney, U. (2002). Multicast over wireless networks. Communications of the ACM, 45(12), 31-37.
Venkatesh, V., Morris, M.G., Davis, G.B., & Davis, F.D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540.
Venkatesh, V., & Davis, F.D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
Venkatesh, V., Morris, M.G., & Ackerman, P.L. (2000). A longitudinal fled investigation of gender differences in individ-ual technology adoption decision-making processes. Organizational Behavior and Human Decision Processes, 83(1), 33-60.
Walton, A., & Johnston, K. (2018). Exploring perceptions of bitcoin adoption: The South African virtual community per-spective. Interdisciplinary Journal of Information, Knowledge, and Management, 13, 165-182.
Wang, Y.S., Lin, H.H., & Luarn, P. (2006). Predicting consumer intention to use mobile service. Information Systems Journal, 16(2), 157-179.
West, S.G., Finch, J.F., & Curran, P.J. (1995). Structural equation models with non-normal variables: Problems and reme-dies. In R. H. Hoyle (Ed.), Structural equation modelling: Concepts, issues, and applications (pp. 56–75). Sage Publica-tions Ltd: Thousand Oaks.
Yang, G., Ji, G., & Tan, K.H. (2022). Impact of artificial intelligence adoption on online returns policies. Annals of Opera-tions Research, 308(1), 703-726. doi:10.1007/S10479-020-03602-Y.
Zhou, T. (2011). An empirical examination of initial trust in mobile banking. Internet Research, 21(5), 527-540.
Aboelmaged, M., & Gebba, T.R. (2013). Mobile banking adoption: An examination of technology acceptance model and theory of planned behavior. International Journal of Business Research and Development, 2(1), 35-50.
Alcántara-Pilar, J. M., & Del Barrio-García, S. (2015). Antecedents of attitudes toward the website: the moderating role of long-term orientation and individualism. Cross Cultural Management, 22(3), 379-404.
Abu Daqar, M.A.M., & Smoudy, A.K. (2019). The role of artificial intelligence on enhancing customer experience. Inter-national Review of Management and Marketing, 9(4), 22-31. doi:10.32479/IRMM.8166.
Agarwal, R., & Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorption and beliefs about infor-mation technology usage. MIS Quarterly, 24(4), 665-669.
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179.
Al-Bashayreh, M., Almajali, D., Al-Okaily, M., & Samed Al-Adwan, A. (2022). Evaluating electronic customer relation-ship management system success: The mediating role of customer satisfaction. Sustainability, 14(19), 12310.
Aldas-Manzano, J., Ruiz-Mafe, C., Sanz-Blas, S., & Lassala-Navarre, C. (2011). Internet banking loyalty: Evaluating the role of trust, satisfaction, perceived risk and frequency of use. The Service Industries Journal, 31(7), 1165-1190.
Almajali, D. (2021). Diagnosing the effect of green supply chain management on firm performance: An experiment study among Jordan industrial estates companies. Uncertain Supply Chain Management, 9(4), 897-904. https://doi.org/10. 5267/j.uscm.2021.7.012
Almajali, D., & Dahalin, Z. (2010). IT-business strategic alignment gap and sustainable competitive advantage in Jordan: Triangulation approach. Proceeding of the 15 IBIMA conference on innovation and knowledge management in Busi-ness: A Business Competitive Edge Perspective,394–405, Cairo.
Almajali, D., Majali, Al-Bashayreh, M., & Altamimi, A. (2023). Antecedents of acceptance model for e-procurement in Jordanian public shareholding firms. Journal of Consumer Marketing, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/JCM-12-2021-5075
Almajali, D., Omar, F., Alsokkar, A., Alsherideh, A., & Dahalin, Z. (2022). Enterprise resource planning success in Jordan from the perspective of IT-Business strategic alignment. Cogent Social Sciences, 8(1), 2062095. https://doi.org/10. 1080/23311886.2022.2062095
Alsajjan, B., & Dennis, C. (2010). Internet banking acceptance model: Cross-market examination. Journal of Business Re-search, 63(9-10), 957-963.
AL-Sous, N., Almajali, D., Al-Radaideh, A., Dahalin, Z., & Dwas, D. (2023). Integrated e-learning for knowledge man-agement and its impact on innovation performance among Jordanian manufacturing sector companies. International Journal of Data and Network Science, 7(1), 495-504.
Anderson, J.C., & Gerbing, D.W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.
Angeles, R., & Nath, R. (2007). Business-to-business e-procurement: Success factors and challenges to implementation. Supply Chain Management, 12(2), 104-115, doi: 10.1108/13598540710737299.
Aw, E.C.X., Tan, G., Cham, T.H., Raman, R., & and Ooi, K.B. (2022). Alexa, what’s on my shopping list? Transforming customer experience with digital voice assistants. Technological Forecasting and Social Change, 180, 121711. doi: 10.1016/j.techfore.2022.121711
Baabdullah, A.M., Alalwan, A., Algharabat, R., Metri, B., & and Rana, N. (2022). Virtual agents and flow experience: An empirical examination of AI-powered chatbots. Technological Forecasting and Social Change, 181, 121772. doi:10.1016/j.techfore.2022.121772.
Bagozzi, R.P. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the Association for Information Systems, 8(4), 244-254.
Bagozzi, R.P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94. https://doi.org/10. 1007/BF02723327
Belanche, D., Casaló, L.V., Flavián, C. (2019). Artificial intelligence in FinTech: Understanding robo-advisors adoption among customers. Industrial Management & Data Systems, 119(7), 1411-1430.
Bellé, N. (2013). Experimental evidence on the relationship between public service motivation and job perfor-mance. Public Administration Review, 73(1), 143-153.
Benamati, J.S., Serva, M.A., & Fuller, M.A. (2010). The productive tension of trust and distrust: The coexistence and rela-tive role of trust and distrust in online banking. Journal of Organizational Computing and Electronic Commerce, 20(4), 328-346.
Benbasat, I., & Barki, H. (2007). Quo vadis TAM? Journal of the Association for Information Systems, 8(4), 77-89.
Brill, T. M., Munoz, L., & Miller, R. J. (2019). Siri, Alexa, and other digital assistants: a study of customer satisfaction with artificial intelligence applications. Journal of Marketing Management, 35(15-16), 1401-1436. https://doi.org/10.1080/0267257X.2019.1687571
Brandon-Jones, A. (2017). E-procurement quality from an internal customer perspective: Construct development, refine-ment, and replication using a mixed-methods approach. International Journal of Operations and Production Manage-ment, 37(12), 1741-1772, doi: 10.1108/ IJOPM-08-2016-0480.
Byrne, B. (2010). Structural equation modeling with AMOS: Basic concepts, applications and programming (6th ed.). Taylor & Francis Group.
Chemingui, H. (2013). Resistance, motivations, trust and intention to use mobile financial services. International Journal of Bank Marketing, 31(7), 574-592.
Cheung, F.M., Leung, K., Zhang, J.X., Sun, H.F., Gan, Y.Q., Song, W.Z., & Xie, D. (2001). Indigenous Chinese personality constructs: Is the five-factor model complete?. Journal of cross-cultural psychology, 32(4), 407-433.
Davis, B.G. (1993). Tools for Teaching, 2nd Eds. Available on http://ngc.digitallibrary.co.in/bitstream/123456789/208/1/Tools%20for%20Teaching.pdf
Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance. MIS Quarterly, 13(3), 319-340.
Duan, Y., He, Q., Feng, W., Li, D., & Fu, Z. (2010). A study on e-learning take-up intention from an innovation adoption perspective: A case in China. Computers & Education, 55(1), 237-246.
Ersoy, A.B. (2022). Artificial intelligence (AI) applications in on-line shopping in India. African Journal of Marketing Management, 14(1). doi:10.5897/AJMM2021.0696.
Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Read-ing, Mass: Addison-Wesley.
Guha, A., Grewal, D., Kopalle, P., Haenlein, M., Schneider, M…Hawkins, G. (2021). How artificial intelligence will affect the future of retailing. Journal of Retailing, 97(1). doi:10.1016/j.jretai.2021.01.005.
Gupta, K.P., Manrai, R., & Goel, U. (2019). Factors influencing adoption of payments banks by Indian customers: Extend-ing UTAUT with perceived credibility. Journal of Asia Business Studies, 13(2), 173-195.
Gunasekaran, A., McGaughey, R.E., Ngai, E.W.T., & Rai, B.K. (2009). E-procurement adoption in the Southcoast SMEs. International Journal of Production Economics, 122(1), doi: 10.1016/j.ijpe.2009.05.013.
Ha, I., Yoon, Y., & Choi, M. (2007). Determinants of adoption of mobile games under mobile broadband wireless access environment. Information & Management, 44(3), 276-286.
Ha, J.H., Kim, S.Y., Bae, S.C., Bae, S., Kim, H., Sim, M., ... & Cho, S.C. (2007). Depression and Internet addiction in ado-lescents. Psychopathology, 40(6), 424-430.
Hair, J.F., Black, W.C., Babin, B.J., & Anderson, R.E. (2010). Multivariate data analysis: A global perspective (7th ed.). Pearson Education International.
Harman, H.H. (1976). Modern factor analysis (3rd ed.). University of Chicago Press.
Holmes-Smith, P., Coote, L., & Cunningham, E. (2006). Structural equation modelling: From the fundamentals to ad-vanced topics. School Research, Evaluation and Measurement Services.
Hsu, C.L., & Lin, J.C. (2023). Understanding the user satisfaction and loyalty of customer service chatbots. Journal of Re-tailing and Consumer Services, 71, 103211. doi:10.1016/J.JRETCONSER.2022.103211.
Hsu, C.L., & Lu, H.P. (2007). Consumer behavior in online game communities: A motivational factor perspective. Com-puters in Human Behavior, 23(3), 1642-1659.
Jordan Stock Market (2023). Available on https://tradingeconomics.com/jordan/stock-market
Jung, D., Dorner, V., Glaser, F., & Morana, S. (2018b). Robo-advisory. Business & Information Systems Engineering, 60(1), 81-86.
Jung, D., Dorner, V., Weinhardt, C., & Pusmaz, H. (2018a). Designing a Robo-advisor for risk-Averse, low-budget con-sumers. Electronic Markets, 28(3), 367-380.
Jung, D., Glaser, F., & Köpplin, W. (2019). Robo-advisory: Opportunities and risks for the future of financial advisory. In: Advances in Consulting Research, ed. V. Nissen (1), 405-427. Cham: Springer.
Kaushik, A.K., Agrawal, A.K., Rahman, Z. (2015). Tourist behaviour towards self-service hotel technology adoption: Trust and subjective norm as key antecedents. Tourism Management Perspectives, 16, 278-289.
Kheng, C.B., & Al-Hawamdeh, S. (2002). The adoption of electronic procurement in Singapore. Electronic Commerce Re-search, 2(2), doi: 10.1023/A:1013388018056.
Kim, D.J., Ferrin, D.L., & Rao, H.R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544-564.
Kim, G., Shin, B., & Lee, H.G. (2009). Understanding dynamics between initial trust and usage intentions of mobile bank-ing. Information Systems Journal, 19(3), 283-311.
Kim, S., & Jin, B. (2002). Validating the retail service quality scale for US and Korean customers of discount stores: An exploratory study. Journal of Services Marketing, 16(3), 223-237.
King, L.A., Hicks, J.A., Krull, J.L., & Del Gaiso, A.K. (2006). Positive affect and the experience of meaning in life. Journal of Personality and Social Psychology, 90(1), 179.
Kline, R.B. (2005). Principles and practice of structural equation modelling. The Guilford Press.
Kline, R.B. (1998). Software review: Software programs for structural equation modeling: Amos, EQS, and LISREL. Journal of Psychoeducational Assessment, 16(4), 343-364. https://doi.org/10.1177/ 073428299801600407
Lari, H., Kuhu, V., & Manu, K.S. (2022). Artificial intelligence in e-commerce: Applications, implications and challeng-es. Asian Journal of Management, 13(3), 235-244. doi:10.52711/2321-5763.2022.00041.
Lee, J., Kao, H.A., & Yang, S. (2014). Service innovation and smart analytics for industry 4.0 and big data environment. Procedia Cirp, 16(1), 3-8.
Lee, Y., Kozar, K.A., & Larsen, K.R. (2003). The technology acceptance model: Past, present, and future. Communications of the Association for Information Systems, 12(1), 50.
Li, C., Runjie, P., Huiyu, X., Zhiwen, D., Chenzhuoer, L., Runjie, P., Huiyu, X., & Zhiwen, D. (2020). Research on artifi-cial intelligence customer service on consumer attitude and its impact during online shopping. JPhCS, 1575(1). doi:10.1088/1742-6596/1575/1/012192.
Liébana-Cabanillas, F., Marinkovic, V., de Luna, I.R., & Kalinic, Z. (2018). Predicting the determinants of mobile pay-ment acceptance: A hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129, 117-130.
Lin, C.J., Weng, R.C., & Keerthi, S.S. (2007). Trust region newton methods for large-scale logistic regression. In: Proceedings of the 24th international conference on Machine Learning, 1, 561-568.
Liu, B. (2011). Web data mining: Exploring hyperlinks, contents, and usage data (Vol. 1). Berlin: springer.
Liu, C., Ehsan, F., Tong, X., & Philip, S.Y. (2022). Recent advances in domain-driven data mining. International Journal of Data Science and Analytics, doi:10.1007/S41060-022-00378-1.
López-Nicolás, C., Molina-Castillo, F.J., & Bouwman, H. (2008). An assessment of advanced mobile services acceptance: Contributions from TAM and diffusion theory models. Information & Management, 45(6), 359-364.
Lucas, H.C., & Spitler, V.K. (1999). Technology use and performance: A field study of broker workstations. Decision Sci-ences, 30(2), 291-311.
Manrai, R., Goel, U., & Yadav, P.D. (2021). Factors affecting adoption of digital payments by semi-rural Indian women: extension of UTAUT-2 with self-determination theory and perceived credibility. Aslib Journal of Information Man-agement, 73(6), 814-838.
Masa’deh, R., Almajali, D.A., Almajali, M.R., Almajali, E.R., & Alshurideh, M.T. (2023). Factors Influencing Online Shopping During Fear of Covid-19 Pandemic in Jordan: A Conceptual Framework. In The Effect of Information Tech-nology on Business and Marketing Intelligence Systems (pp. 305-315). Cham: Springer International Publishing.
Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191.
Mazambani, L., & Mutambara, E. (2019). Predicting FinTech innovation adoption in South Africa: The case of cryptocur-rency. African Journal of Economic and Management Studies, 11(1), 30-50. https://doi.org/10. 1108/AJEMS-04-2019-0152
Moon, J.W., & Kim, Y.G. (2001). Extending the TAM for a worldwide-web context. Information & Management, 38(4), 217-230.
Moore, S., Sandy, B., & Jonathan, E. (2022). The social significance of AI in retail on customer experience and shopping practices. Journal of Retailing and Consumer Services, 64(January). doi:10.1016/J.JRETCONSER.2021.102755.
Moura, S., Reis, J.L., & Rodrigues, L. (2021). The Artificial Intelligence in the Personalisation of the Customer Journey – a Literature Review. CAPSI 2021 Proceedings, October. https://aisel.aisnet.org/capsi2021/28.
Nielsen, H., Brunak, S., & von Heijne, G. (1999). Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Engineering, 12(1), 3-9.
Nimbalkar, A.A., & Berad, A.T. (2021). The increasing importance of AI applications in e-commerce. International Inter-disciplinary Research Journal, 13(1), 388-391.
Nunnally, J.C., & Bernstein, I. (1978). Psychometric Theory. MacGraw-Hill.
Olsen, R. (2012). Trust: The underappreciated investment risks attribute. Journal of Behavioral Finance, 13(4), 308-313.
Park, J.Y., Ryu, J.P., & Shin, H.J. (2016). Robo advisors for portfolio management. Advanced Science and Technology Letters, 141, 104-108.
Pavlou, P.A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology ac-ceptance model. International Journal of Electronic Commerce, 7(3), 101-134.
Pavlou, P.A., & Fygenson, M. (2006). Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. MIS Quarterly, 30(1), 115-143.
Phoon, K., & Koh, F. (2017). Robo-advisors and wealth management. The Journal of Alternative Investments, 20(3), 79-94.
Podsakoff, P.M., MacKenzie, S.B., Lee, J.-Y., & Podsakoff, N.P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. https://doi.org/10.1037/ 0021-9010.88.5.879
Raue, M., D’Ambrosio, L.A., & Coughlin, J.F. (2020). The power of peers: Prompting savings behavior through social comparison. Journal of Behavioral Finance, 21(1), 1-13.
Reher, M., & Sun, C. (2016). Robo Advisers and Mutual Fund Stickiness. Unpublished manuscript, last modifed. https://pdfs.Seman ticscholar. org/75d1/7b81485eaf6a6f6a214242a6dfdc7bf9ec59. pdf. Accessed, 1.
Reunis, M.R.B., van Raaij, E.M., & Santema, S.C. (2004). Actor-to-actor dissemination of electronic procurement (EP) adoption: An exploration of influencing factors. Journal of Purchasing and Supply Management, 10, 4-5, doi: 10.1016/j.pursup.2004.10.002.
Rogers, E.M. (2003). Diffusion of Innovations, 5th edition, the free press. New York: The division of Mc Millin Company.
Schmidt-Belz, B. (2003, September). Aspects of user trust in mobile guides. In: Proc. Mobile HCI.
Shin, H., Casidy, R., Yoon, A., & Yoon, S.H. (2016). Brand trust and avoidance following brand crisis: A quasi-experiment on the effect of franchisor statements. Journal of Brand Management, 23(5), 1-23.
Tarhini, A., Arachchilage, N.A.G., & Abbasi, M.S. (2015). A critical review of theories and models of technology adop-tion and acceptance in information system research. International Journal of Technology Diffusion (IJTD), 6(4), 58-77.
Taylor, S., & Todd, P.A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176.
Toktas-Palut, P., Baylav, E., Teoman, S., & Altunbey, M. (2014). The impact of barriers and benefits of eprocurement on its adoption decision: an empirical analysis. International Journal of Production Economics, 158, 77-90, doi: 10.1016/J.IJPE.2014.07.017.
Vaidya, K., Sajeev, A.S.M., & Callender, G. (2006). Critical factors that influence e-procurement implementation success in the public sector. Journal of Public Procurement, 6(1/2), 70-99.
Varshney, U. (2002). Multicast over wireless networks. Communications of the ACM, 45(12), 31-37.
Venkatesh, V., Morris, M.G., Davis, G.B., & Davis, F.D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540.
Venkatesh, V., & Davis, F.D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
Venkatesh, V., Morris, M.G., & Ackerman, P.L. (2000). A longitudinal fled investigation of gender differences in individ-ual technology adoption decision-making processes. Organizational Behavior and Human Decision Processes, 83(1), 33-60.
Walton, A., & Johnston, K. (2018). Exploring perceptions of bitcoin adoption: The South African virtual community per-spective. Interdisciplinary Journal of Information, Knowledge, and Management, 13, 165-182.
Wang, Y.S., Lin, H.H., & Luarn, P. (2006). Predicting consumer intention to use mobile service. Information Systems Journal, 16(2), 157-179.
West, S.G., Finch, J.F., & Curran, P.J. (1995). Structural equation models with non-normal variables: Problems and reme-dies. In R. H. Hoyle (Ed.), Structural equation modelling: Concepts, issues, and applications (pp. 56–75). Sage Publica-tions Ltd: Thousand Oaks.
Yang, G., Ji, G., & Tan, K.H. (2022). Impact of artificial intelligence adoption on online returns policies. Annals of Opera-tions Research, 308(1), 703-726. doi:10.1007/S10479-020-03602-Y.
Zhou, T. (2011). An empirical examination of initial trust in mobile banking. Internet Research, 21(5), 527-540.