How to cite this paper
Rabaai, A., Al-lozi, E., Hammouri, Q., Muhammad, N., Alsmadi, A & Al-Gasawneh, J. (2022). Continuance intention to use smartwatches: An empirical study.International Journal of Data and Network Science, 6(4), 1643-1658.
Refrences
Adapa, A., Nah, F. F.-H., Hall, R. H., Siau, K., & Smith, S. N. (2018). Factors Influencing the Adoption of Smart Wearable Devices. International Journal of Human–Computer Interaction, 34(5), 399–409. https://doi.org/10.1080/10447318.2017.1357902
Alalwan, A. A. (2020). Mobile Food Ordering Apps: An Empirical Study of the Factors Affecting Customer E-Satisfaction and Continued Intention to Reuse. International Journal of Information Management, 50, 28–44. https://doi.org/10.1016/j.ijinfomgt.2019.04.008
Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99–110. https://doi.org/10.1016/j.ijinfomgt.2017.01.002
Almajali, D., Hammouri, Q., Majali, T., Al-Gasawneh, J., & Dahalin, Z. (2021). Antecedents of consumers’ adoption of electronic commerce in developing countries. International Journal of Data and Network Science, 5(4), 681-690.
Al-Emran, M. (2021). Evaluating the Use of Smartwatches for Learning Purposes through the Integration of the Technolo-gy Acceptance Model and Task-Technology Fit. International Journal of Human–Computer Interaction, 37(19), 1874–1882. https://doi.org/10.1080/10447318.2021.1921481
Alraimi, K. M., Zo, H., & Ciganek, A. P. (2015). Understanding the MOOCs continuance: The role of openness and reputa-tion. Computers & Education, 80, 28–38. https://doi.org/10.1016/j.compedu.2014.08.006
Amoroso, D., & Lim, R. (2017). The mediating effects of habit on continuance intention. International Journal of Infor-mation Management, 37(6), 693–702. https://doi.org/10.1016/j.ijinfomgt.2017.05.003
Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473. https://doi.org/10.1016/j.tele.2020.101473
Asimakopoulos, S., Asimakopoulos, G., & Spillers, F. (2017). Motivation and User Engagement in Fitness Tracking: Heu-ristics for Mobile Healthcare Wearables. Informatics, 4(1), 5. https://doi.org/10.3390/informatics4010005
Barnes, S. J. (2011). Understanding use continuance in virtual worlds: Empirical test of a research model. Information & Management, 48(8), 313–319. https://doi.org/10.1016/j.im.2011.08.004
Baskerville, R. L., Kaul, M., & Storey, V. C. (2018). Aesthetics in design science research. European Journal of Infor-mation Systems, 27(2), 140–153. https://doi.org/10.1080/0960085X.2017.1395545
Basoglu, N., Ok, A. E., & Daim, T. U. (2017). What will it take to adopt smart glasses: A consumer choice based review? Technology in Society, 50, 50–56. https://doi.org/10.1016/j.techsoc.2017.04.005
Beh, P. K., Ganesan, Y., Iranmanesh, M., & Foroughi, B. (2019). Using smartwatches for fitness and health monitoring: The UTAUT2 combined with threat appraisal as moderators. Behaviour & Information Technology, 1–18. https://doi.org/10.1080/0144929X.2019.1685597
Bhattacherjee, A. (2001a). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351. https://doi.org/10.2307/3250921
Bhattacherjee, A. (2001b). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2), 201–214. https://doi.org/10.1016/S0167-9236(01)00111-7
Bhattacherjee, A. & Premkumar. (2004). Understanding Changes in Belief and Attitude toward Information Technology Usage: A Theoretical Model and Longitudinal Test. MIS Quarterly, 28(2), 229. https://doi.org/10.2307/25148634
Bloch, P. H. (1982). Involvement Beyond the Purchase Process: Conceptual Issues and Empirical Investigation. ACR North American Advances, NA-09. https://www.acrwebsite.org/volumes/6037/volumes/v09/NA-09/full
Canhoto, A. I., & Arp, S. (2017). Exploring the factors that support adoption and sustained use of health and fitness wear-ables. Journal of Marketing Management, 33(1–2), 32–60. https://doi.org/10.1080/0267257X.2016.1234505
Cheng, Y.-M. (2014). Extending the expectation-confirmation model with quality and flow to explore nurses’ continued blended e-learning intention. Information Technology & People, 27(3), 230–258. https://doi.org/10.1108/ITP-01-2013-0024
Chin, W. W. (2010). Bootstrap Cross-Validation Indices for PLS Path Model Assessment. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications (pp. 83–97). Springer. https://doi.org/10.1007/978-3-540-32827-8_4
Choi, J., & Kim, S. (2016). Is the smartwatch an IT product or a fashion product? A study on factors affecting the intention to use smartwatches. Computers in Human Behavior, 63, 777–786. https://doi.org/10.1016/j.chb.2016.06.007
Chuah, S. H.-W. (2019). You inspire me and make my life better: Investigating a multiple sequential mediation model of smartwatch continuance intention. Telematics and Informatics, 43, 101245. https://doi.org/10.1016/j.tele.2019.101245
Chuah, S. H.-W., Rauschnabel, P. A., Krey, N., Nguyen, B., Ramayah, T., & Lade, S. (2016). Wearable technologies: The role of usefulness and visibility in smartwatch adoption. Computers in Human Behavior, 65, 276–284. https://doi.org/10.1016/j.chb.2016.07.047
Claussen, J., Essling, C., & Kretschmer, T. (2015). When less can be more – Setting technology levels in complementary goods markets. Research Policy, 44(2), 328–339. https://doi.org/10.1016/j.respol.2014.10.005
Cyr, D., Head, M., & Ivanov, A. (2006). Design aesthetics leading to m-loyalty in mobile commerce. Information & Man-agement, 43(8), 950–963. https://doi.org/10.1016/j.im.2006.08.009
Dahlberg, T., Guo, J., & Ondrus, J. (2015). A Critical Review of Mobile Payment Research. Electronic Commerce Research and Applications, 14(5), 265–284. https://doi.org/10.1016/j.elerap.2015.07.006
Dai, H. M., Teo, T., Rappa, N. A., & Huang, F. (2020). Explaining Chinese university students’ continuance learning inten-tion in the MOOC setting: A modified expectation confirmation model perspective. Computers & Education, 150, 103850. https://doi.org/10.1016/j.compedu.2020.103850
Dehghani, M. (2018). Exploring the motivational factors on continuous usage intention of smartwatches among actual us-ers. Behaviour & Information Technology, 37(2), 145–158. https://doi.org/10.1080/0144929X.2018.1424246
Dehghani, M., & Kim, K. J. (2019). The effects of design, size, and uniqueness of smartwatches: Perspectives from cur-rent versus potential users. Behaviour & Information Technology, 38(11), 1143–1153. https://doi.org/10.1080/0144929X.2019.1571111
Dehghani, M., Kim, K. J., & Dangelico, R. M. (2018). Will smartwatches last? Factors contributing to intention to keep using smart wearable technology. Telematics and Informatics, 35(2), 480–490. https://doi.org/10.1016/j.tele.2018.01.007
Ding, Y. (2019). Looking forward: The role of hope in information system continuance. Computers in Human Behavior, 91, 127–137. https://doi.org/10.1016/j.chb.2018.09.002
Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382–388. https://doi.org/10.1177/002224378101800313
Foroughi, B., Iranmanesh, M., & Hyun, S. S. (2019). Understanding the determinants of mobile banking continuance us-age intention. Journal of Enterprise Information Management, 32(6), 1015–1033. https://doi.org/10.1108/JEIM-10-2018-0237
Gartner. (2016). Gartner Survey Shows Wearable Devices Need to Be More Useful. https://www.gartner.com/en/newsroom/press-releases/2016-12-07-gartner-survey-shows-wearable-devices-need-to-be-more-useful
Global Finance. (2020). Kuwait Startups: Seeding Tomorrow’s Giants. https://www.gfmag.com/magazine/january-2020/kuwait-startups-seeding-tomorrows-giants
Hair, J. F., Hollingsworth, C., Randolph, A., & Chong, A. (2017). An updated and expanded assessment of PLS-SEM in in-formation systems research. Industrial Management & Data Systems, 117(3), 442–458. https://doi.org/10.1108/IMDS-04-2016-0130
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. Eu-ropean Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
Hair, J. F., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128
Hammouri, Q., & Abu-Shanab, E. A. (2020). Major Factors Influencing the Adoption of Cloud Computing in Jordan. In-ternational Journal of Technology and Human Interaction, 16(4), 55-69.
Hammouri, Q. M., Abu-Shanab, E. A., & Nusairat, N. M. (2021). Attitudes Toward Implementing E-Government in Health Insurance Administration. International Journal of Electronic Government Research, 17(2), 1-18.
Hammouri, Q., Al-Gasawneh, J., Abu-Shanab, E., Nusairat, N., & Akhorshaideh, H. (2021). Determinants of the continu-ous use of mobile apps: The mediating role of users' awareness and the moderating role of customer focus. Interna-tional Journal of Data and Network Science, 5(4), 667-680.
Hammouri, Q., Altaher, A., Al-Gasawneh, J., Rabaa'i, A., Aloqool, A., and Khataybeh, H. (2022). Understanding the deter-minants of digital shopping features: The role of promo code on customer behavioral intention, International Journal of Data and Network Science. DOI: 10.5267/j.ijdns.2022.4.009
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-0382
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The Use of Partial Least Squares Path Modeling in International Marketing. In R. R. Sinkovics & P. N. Ghauri (Eds.), New Challenges to International Marketing (Vol. 20, pp. 277–319). Emerald Group Publishing Limited. https://doi.org/10.1108/S1474-7979(2009)0000020014
Hong, J.-C., Lin, P.-H., & Hsieh, P.-C. (2017). The effect of consumer innovativeness on perceived value and continuance intention to use smartwatch. Computers in Human Behavior, 67, 264–272. https://doi.org/10.1016/j.chb.2016.11.001
Hong, S., Thong, J. Y. L., & Tam, K. Y. (2006). Understanding continued information technology usage behavior: A com-parison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819–1834. https://doi.org/10.1016/j.dss.2006.03.009
Hsiao, K.-L., & Chen, C.-C. (2018). What drives smartwatch purchase intention? Perspectives from hardware, software, design, and value. Telematics and Informatics, 35(1), 103–113. https://doi.org/10.1016/j.tele.2017.10.002
Hsu, C.-L., Lin, Y.-H., Chen, M.-F., & Suraphatchara, K. (2019). Understanding foreign students’ continuance intention toward mobile telecommunication service: An integrative theoretical model. International Journal of Electronic Com-merce Studies, 9(2), 93–118. https://doi.org/10.7903/ijecs.1601
Huang, Y.-M. (2016). The factors that predispose students to continuously use cloud services: Social and technological perspectives. Computers & Education, 97, 86–96. https://doi.org/10.1016/j.compedu.2016.02.016
Huang, Y.-M. (2019). Examining students’ continued use of desktop services: Perspectives from expectation-confirmation and social influence. Computers in Human Behavior, 96, 23–31. https://doi.org/10.1016/j.chb.2019.02.010
Ifinedo, P. (2018). Determinants of students’ continuance intention to use blogs to learn: An empirical investigation. Be-haviour & Information Technology, 37(4), 381–392. https://doi.org/10.1080/0144929X.2018.1436594
Jeong, S. C., Kim, S.-H., Park, J. Y., & Choi, B. (2017). Domain-specific innovativeness and new product adoption: A case of wearable devices. Telematics and Informatics, 34(5), 399–412. https://doi.org/10.1016/j.tele.2016.09.001
Kalantari, M. (2017). Consumers’ adoption of wearable technologies: Literature review, synthesis, and future research agenda. International Journal of Technology Marketing, 12(3), 274–307. https://doi.org/10.1504/IJTMKT.2017.089665
Kenny, D. (2018). Moderator Variables. http://davidakenny.net/cm/moderation.htm
Kim, K. J. (2016). Round or Square? How Screen Shape Affects Utilitarian and Hedonic Motivations for Smartwatch Adoption. Cyberpsychology, Behavior, and Social Networking, 19(12), 733–739. https://doi.org/10.1089/cyber.2016.0136
Kim, T., & Chiu, W. (2018). Consumer acceptance of sports wearable technology: The role of technology readiness. Inter-national Journal of Sports Marketing and Sponsorship, 20(1), 109–126. https://doi.org/10.1108/IJSMS-06-2017-0050
Kline, R. B. (2016). Principles and Practice of Structural Equation Modeling, Fourth Edition. Guilford Publications.
Krey, N., Chuah, S. H.-W., Ramayah, T., & Rauschnabel, P. A. (2019). How functional and emotional ads drive smartwatch adoption: The moderating role of consumer innovativeness and extraversion. Internet Research, 29(3), 578–602. https://doi.org/10.1108/IntR-12-2017-0534
Lee, E.-J. (2020). Gender influence in the effect of design aesthetics on perceived product value of wearables. Internation-al Journal of Advanced Culture Technology, 8(2), 129–138. https://doi.org/10.17703/IJACT.2020.8.2.129
Leong, L.-Y., Hew, T.-S., Ooi, K.-B., & Wei, J. (2020). Predicting mobile wallet resistance: A two-staged structural equa-tion modeling-artificial neural network approach. International Journal of Information Management, 51, 102047. https://doi.org/10.1016/j.ijinfomgt.2019.102047
Liébana-Cabanillas, F., Marinkovic, V., Ramos De Luna, I., & Kalinic, Z. (2018). Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129, 117–130. https://doi.org/10.1016/j.techfore.2017.12.015
Limayem, M., Hirt, S. G., & Cheung, C. M. K. (2007). How Habit Limits the Predictive Power of Intention: The Case of Information Systems Continuance. MIS Quarterly, 31(4), 705–737. https://doi.org/10.2307/25148817
Nam, J., Hamlin, R., Gam, H. J., Kang, J. H., Kim, J., Kumphai, P., Starr, C., & Richards, L. (2007). The fashion-conscious behaviours of mature female consumers. International Journal of Consumer Studies, 31(1), 102–108. https://doi.org/10.1111/j.1470-6431.2006.00497.x
Nanda, P., Bos, J., Kramer, K., Hay, C., & Ignacz, J. (2008). Effect of smartphone aesthetic design on users’ emotional re-action: An empirical study. The TQM Journal, 20(4), 348–355. https://doi.org/10.1108/17542730810881339
Nelson, E. C., Verhagen, T., & Noordzij, M. L. (2016). Health empowerment through activity trackers: An empirical smart wristband study. Computers in Human Behavior, 62, 364–374. https://doi.org/10.1016/j.chb.2016.03.065
Nunnally, C., & Bernstein, H. (1994). Psychometric Theory (3rd ed.). McGrawHill.
Nusairat, N., Al-Gasawneh, J., Aloqool, A., Alzubi, K., Akhorshaideh, A., Joudeh, J., & Ibrahim, H. (2021). The relation-ship between Internet of things and search engine optimization in Jordanian Tele-Communication Companies: The mediating role of user behavior. International Journal of Data and Network Science, 5(3), 163-172.
Ogbanufe, O., & Gerhart, N. (2018). Watch It! Factors Driving Continued Feature Use of the Smartwatch. International Journal of Human–Computer Interaction, 34(11), 999–1014. https://doi.org/10.1080/10447318.2017.1404779
Oliver, R. (1980). A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. Journal of Market-ing Research, 17(4), 460–469. https://doi.org/10.1177/002224378001700405
Oliver, R. (1997). Satisfaction: A Behavioral Perspective on the Consumer. McGraw Hill.
Pal, D., Funilkul, S., & Vanijja, V. (2020). The future of smartwatches: Assessing the end-users’ continuous usage using an extended expectation-confirmation model. Universal Access in the Information Society, 19(2), 261–281. https://doi.org/10.1007/s10209-018-0639-z
Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879
Potnis, D., Demissie, D., & Deosthali, K. (2017). Students’ intention to adopt Internet-based personal safety wearable de-vices: Extending UTAUT with trusting belief. First Monday. https://doi.org/10.5210/fm.v22i9.7808
Rabaa’i, A. A. (2012). Evaluating the success of large-scale, integrated information systems through the lens of IS-impact and IS-support. [PhD thesis]. Queensland University of Technology.
Rabaai, A. A. (2015). An Empirical Investigation on the Adoption of e-Government in Developing Countries: The Case of Jordan. Computer and Information Science, 8(3), 83. https://doi.org/10.5539/cis.v8n3p83
Rabaa’i, A. A. (2016). Extending the technology acceptance model (TAM) to assess students’ behavioural intentions to adopt an e-learning system: The case of moodle as a learning tool. Journal of Emerging Trends in Engineering and Ap-plied Sciences, 7(1), 13–30.
Rabaa’i, A. A. (2017a). Holistic Procedures for Contemporary Formative Construct Validation Using PLS: A Comprehen-sive Example. International Journal of Business Information Systems, 25(3), 279–318. https://doi.org/10.1504/IJBIS.2017.084436
Rabaa’i, A. A. (2017b). The use of UTAUT to investigate the adoption of e-government in Jordan: A cultural perspective. International Journal of Business Information Systems, 24(3), 285–315. https://doi.org/10.1504/IJBIS.2017.082037
Rabaa’i, A. A. (2022). What’s for Dinner? Factors Contributing to the Continuous Usage of Food Delivery Apps (FDAs). Asia Pacific Journal of Information Systems.
Rabaa’i, A. A., & Abu ALMaati, S. (2021). Exploring the Determinants of Users’ Continuance Intention to Use Mobile Banking Services in Kuwait: Extending the Expectation-Confirmation Model. Asia Pacific Journal of Information Sys-tems, 3, 141–184. https://doi.org/10.14329/apjis.2021.31.2.141
Rabaa’i, A. A., ALmaati, S. A., & Zhu, X. (2021). Students’ Continuance Intention to Use Moodle: An Expectation-Confirmation Model Approach. Interdisciplinary Journal of Information, Knowledge, and Management, 16, 397–434. https://doi.org/10.28945/4842
Rabaa’i, A. A., Bhat, H., & Abu Al Maati, S. (2018). Theorising social networks addiction: An empirical investigation. In-ternational Journal of Social Media and Interactive Learning Environments, 6(1), 1. https://doi.org/10.1504/IJSMILE.2018.10013518
Rabaa’i, A. A., Tate, M., & Gable, G. (2015). Can’t See the Trees for the Forest? Why IS-SERVQUAL Items Matter. Asia Pacific Journal of Information Systems, 25(2), 211–238. https://doi.org/10.14329/apjis.2015.25.2.211
Rabaa’i, A. A., & Zhu, X. (2021). Understanding the Determinants of Wearable Payment Adoption: An Empirical Study. Interdisciplinary Journal of Information, Knowledge, and Management, 16, 173–211. https://doi.org/10.28945/4746
Rabaai, A. A., Zogheib, B., AlShatti, A., & AlJamal, E. M. (2015). Adoption of E-Government in Developing Countries: The Case of the State of Kuwait. Journal of Global Research in Computer Science, 6(10), 6–21.
Rabaa’i, A. A. (in press a). An Investigation into the acceptance of mobile wallets in the FinTech era: an empirical study from Kuwait. International Journal of Business Information Systems. DOI: 10.1504/IJBIS.2021.10038422
Rabaa’i, A. A. (in press b). Factors affecting the adoption of mobile grocery delivery applications. International Journal of Business Information Systems. DOI: 10.1504/IJBIS.2021.10045250
Rabaa’i, A. A. (in press c). FinTech in Kuwait: a survey study. International Journal of Business Information Systems. DOI: 10.1504/IJBIS.2021.10042271
Rahi, S., Abd. Ghani, M., Alnaser, F. M., & Ngah, A. H. (2018). Investigating the role of unified theory of acceptance and use of technology (UTAUT) in internet banking adoption context. Management Science Letters, 173–186. https://doi.org/10.5267/j.msl.2018.1.001
Rauschnabel, P. A., Brem, A., & Ivens, B. S. (2015). Who will buy smart glasses? Empirical results of two pre-market-entry studies on the role of personality in individual awareness and intended adoption of Google Glass wearables. Computers in Human Behavior, 49, 635–647. https://doi.org/10.1016/j.chb.2015.03.003
Rauschnabel, P. A., Hein, D. W. E., He, J., Ro, Y. K., Rawashdeh, S., & Krulikowski, B. (2016). Fashion or Technology? A Fashnology Perspective on the Perception and Adoption of Augmented Reality Smart Glasses. I-Com, 15(2), 179–194. https://doi.org/10.1515/icom-2016-0021
Reimann, M., Zaichkowsky, J., Neuhaus, C., Bender, T., & Weber, B. (2010). Aesthetic package design: A behavioral, neu-ral, and psychological investigation. Journal of Consumer Psychology, 20(4), 431–441. https://doi.org/10.1016/j.jcps.2010.06.009
Ringle, C., Wende, S., & Becker, J. (2015). SmartPLS 3. Boenningstedt: SmartPLS GmbH. http://www.smartpls.com
Sabah, N. M. (2020). Motivation factors and barriers to the continuous use of blended learning approach using Moodle: Students’ perceptions and individual differences. Behaviour & Information Technology, 39(8), 875–898. https://doi.org/10.1080/0144929X.2019.1623323
Sabbir, M., Akter, S., Khan, T., & Das, A. (2020). Exploring Factors Affecting Consumers’ Intention to Use Smartwatch in Bangladesh: An Empirical Study. Asia Pacific Journal of Information Systems, 30, 636–663. https://doi.org/10.14329/apjis.2020.30.3.636
Sarstedt, M., Ringle, C. M., Smith, D., Reams, R., & Hair, J. F. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105–115. https://doi.org/10.1016/j.jfbs.2014.01.002
Shao, Z. (2018). Examining the impact mechanism of social psychological motivations on individuals’ continuance inten-tion of MOOCs: The moderating effect of gender. Internet Research, 28(1), 232–250. https://doi.org/10.1108/IntR-11-2016-0335
Sharma, S. K., Sharma, H., & Dwivedi, Y. K. (2019). A Hybrid SEM-Neural Network Model for Predicting Determinants of Mobile Payment Services. Information Systems Management, 36(3), 243–261. https://doi.org/10.1080/10580530.2019.1620504
Sonderegger, A., & Sauer, J. (2010). The influence of design aesthetics in usability testing: Effects on user performance and perceived usability. Applied Ergonomics, 41(3), 403–410. https://doi.org/10.1016/j.apergo.2009.09.002
Spreng, R. A., MacKenzie, S. B., & Olshavsky, R. W. (1996). A Reexamination of the Determinants of Consumer Satisfac-tion. Journal of Marketing, 60(3), 15–32. https://doi.org/10.1177/002224299606000302
Statista. (2021). Global wearable device end-user spending by category 2019-2022. https://www.statista.com/statistics/1065271/wearable-devices-worldwide-spending/
Stiglbauer, B., Weber, S., & Batinic, B. (2019). Does your health really benefit from using a self-tracking device? Evi-dence from a longitudinal randomized control trial. Computers in Human Behavior, 94, 131–139. https://doi.org/10.1016/j.chb.2019.01.018
Straub, D., & Gefen, D. (2004). Validation Guidelines for IS Positivist Research. Communications of the Association for Information Systems, 13. https://doi.org/10.17705/1CAIS.01324
Tam, C., Santos, D., & Oliveira, T. (2018). Exploring the Influential Factors of Continuance Intention to Use Mobile Apps: Extending the Expectation Confirmation Model. Information Systems Frontiers, 22(1), 243–257. https://doi.org/10.1007/s10796-018-9864-5
Tran, L. T. T., Pham, L. M. T., & Le, L. T. (2019). E-Satisfaction and Continuance Intention: The Moderator Role of Online Ratings. International Journal of Hospitality Management, 77, 311–322. https://doi.org/10.1016/j.ijhm.2018.07.011
Turhan, G. (2013). An assessment towards the acceptance of wearable technology to consumers in Turkey: The application to smart bra and t-shirt products. The Journal of The Textile Institute, 104(4), 375–395. https://doi.org/10.1080/00405000.2012.736191
Vandrico. (2021). The wearables database. https ://vandr ico.com/weara bles/
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478. JSTOR. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178. JSTOR. https://doi.org/10.2307/41410412
Wang, W.-T., Ou, W.-M., & Chen, W.-Y. (2019a). The Impact of Inertia and User Satisfaction on the Continuance Inten-tions to Use Mobile Communication Applications: A Mobile Service Quality Perspective. International Journal of In-formation Management, 44, 178–193. https://doi.org/10.1016/j.ijinfomgt.2018.10.011
Yang, H., Yu, J., Zo, H., & Choi, M. (2016). User acceptance of wearable devices: An extended perspective of perceived value. Telematics and Informatics, 33(2), 256–269. https://doi.org/10.1016/j.tele.2015.08.007
Yoon, C., & Rolland, E. (2015). Understanding Continuance Use in Social Networking Services. Journal of Computer In-formation Systems, 55(2), 1–8. https://doi.org/10.1080/08874417.2015.11645751
Zhou, J. (2017). Exploring the factors affecting learners’ continuance intention of MOOCs for online collaborative learn-ing: An extended ECM perspective. Australasian Journal of Educational Technology. https://doi.org/10.14742/ajet.2914
Zogheib, B., Rabaa’i, A., Zogheib, S., & Elsaheli, A. (2015). University Student Perceptions of Technology Use in Mathe-matics Learning. Journal of Information Technology Education: Research, 14, 417–438. https://doi.org/10.28945/2315
Alalwan, A. A. (2020). Mobile Food Ordering Apps: An Empirical Study of the Factors Affecting Customer E-Satisfaction and Continued Intention to Reuse. International Journal of Information Management, 50, 28–44. https://doi.org/10.1016/j.ijinfomgt.2019.04.008
Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99–110. https://doi.org/10.1016/j.ijinfomgt.2017.01.002
Almajali, D., Hammouri, Q., Majali, T., Al-Gasawneh, J., & Dahalin, Z. (2021). Antecedents of consumers’ adoption of electronic commerce in developing countries. International Journal of Data and Network Science, 5(4), 681-690.
Al-Emran, M. (2021). Evaluating the Use of Smartwatches for Learning Purposes through the Integration of the Technolo-gy Acceptance Model and Task-Technology Fit. International Journal of Human–Computer Interaction, 37(19), 1874–1882. https://doi.org/10.1080/10447318.2021.1921481
Alraimi, K. M., Zo, H., & Ciganek, A. P. (2015). Understanding the MOOCs continuance: The role of openness and reputa-tion. Computers & Education, 80, 28–38. https://doi.org/10.1016/j.compedu.2014.08.006
Amoroso, D., & Lim, R. (2017). The mediating effects of habit on continuance intention. International Journal of Infor-mation Management, 37(6), 693–702. https://doi.org/10.1016/j.ijinfomgt.2017.05.003
Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473. https://doi.org/10.1016/j.tele.2020.101473
Asimakopoulos, S., Asimakopoulos, G., & Spillers, F. (2017). Motivation and User Engagement in Fitness Tracking: Heu-ristics for Mobile Healthcare Wearables. Informatics, 4(1), 5. https://doi.org/10.3390/informatics4010005
Barnes, S. J. (2011). Understanding use continuance in virtual worlds: Empirical test of a research model. Information & Management, 48(8), 313–319. https://doi.org/10.1016/j.im.2011.08.004
Baskerville, R. L., Kaul, M., & Storey, V. C. (2018). Aesthetics in design science research. European Journal of Infor-mation Systems, 27(2), 140–153. https://doi.org/10.1080/0960085X.2017.1395545
Basoglu, N., Ok, A. E., & Daim, T. U. (2017). What will it take to adopt smart glasses: A consumer choice based review? Technology in Society, 50, 50–56. https://doi.org/10.1016/j.techsoc.2017.04.005
Beh, P. K., Ganesan, Y., Iranmanesh, M., & Foroughi, B. (2019). Using smartwatches for fitness and health monitoring: The UTAUT2 combined with threat appraisal as moderators. Behaviour & Information Technology, 1–18. https://doi.org/10.1080/0144929X.2019.1685597
Bhattacherjee, A. (2001a). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351. https://doi.org/10.2307/3250921
Bhattacherjee, A. (2001b). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2), 201–214. https://doi.org/10.1016/S0167-9236(01)00111-7
Bhattacherjee, A. & Premkumar. (2004). Understanding Changes in Belief and Attitude toward Information Technology Usage: A Theoretical Model and Longitudinal Test. MIS Quarterly, 28(2), 229. https://doi.org/10.2307/25148634
Bloch, P. H. (1982). Involvement Beyond the Purchase Process: Conceptual Issues and Empirical Investigation. ACR North American Advances, NA-09. https://www.acrwebsite.org/volumes/6037/volumes/v09/NA-09/full
Canhoto, A. I., & Arp, S. (2017). Exploring the factors that support adoption and sustained use of health and fitness wear-ables. Journal of Marketing Management, 33(1–2), 32–60. https://doi.org/10.1080/0267257X.2016.1234505
Cheng, Y.-M. (2014). Extending the expectation-confirmation model with quality and flow to explore nurses’ continued blended e-learning intention. Information Technology & People, 27(3), 230–258. https://doi.org/10.1108/ITP-01-2013-0024
Chin, W. W. (2010). Bootstrap Cross-Validation Indices for PLS Path Model Assessment. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications (pp. 83–97). Springer. https://doi.org/10.1007/978-3-540-32827-8_4
Choi, J., & Kim, S. (2016). Is the smartwatch an IT product or a fashion product? A study on factors affecting the intention to use smartwatches. Computers in Human Behavior, 63, 777–786. https://doi.org/10.1016/j.chb.2016.06.007
Chuah, S. H.-W. (2019). You inspire me and make my life better: Investigating a multiple sequential mediation model of smartwatch continuance intention. Telematics and Informatics, 43, 101245. https://doi.org/10.1016/j.tele.2019.101245
Chuah, S. H.-W., Rauschnabel, P. A., Krey, N., Nguyen, B., Ramayah, T., & Lade, S. (2016). Wearable technologies: The role of usefulness and visibility in smartwatch adoption. Computers in Human Behavior, 65, 276–284. https://doi.org/10.1016/j.chb.2016.07.047
Claussen, J., Essling, C., & Kretschmer, T. (2015). When less can be more – Setting technology levels in complementary goods markets. Research Policy, 44(2), 328–339. https://doi.org/10.1016/j.respol.2014.10.005
Cyr, D., Head, M., & Ivanov, A. (2006). Design aesthetics leading to m-loyalty in mobile commerce. Information & Man-agement, 43(8), 950–963. https://doi.org/10.1016/j.im.2006.08.009
Dahlberg, T., Guo, J., & Ondrus, J. (2015). A Critical Review of Mobile Payment Research. Electronic Commerce Research and Applications, 14(5), 265–284. https://doi.org/10.1016/j.elerap.2015.07.006
Dai, H. M., Teo, T., Rappa, N. A., & Huang, F. (2020). Explaining Chinese university students’ continuance learning inten-tion in the MOOC setting: A modified expectation confirmation model perspective. Computers & Education, 150, 103850. https://doi.org/10.1016/j.compedu.2020.103850
Dehghani, M. (2018). Exploring the motivational factors on continuous usage intention of smartwatches among actual us-ers. Behaviour & Information Technology, 37(2), 145–158. https://doi.org/10.1080/0144929X.2018.1424246
Dehghani, M., & Kim, K. J. (2019). The effects of design, size, and uniqueness of smartwatches: Perspectives from cur-rent versus potential users. Behaviour & Information Technology, 38(11), 1143–1153. https://doi.org/10.1080/0144929X.2019.1571111
Dehghani, M., Kim, K. J., & Dangelico, R. M. (2018). Will smartwatches last? Factors contributing to intention to keep using smart wearable technology. Telematics and Informatics, 35(2), 480–490. https://doi.org/10.1016/j.tele.2018.01.007
Ding, Y. (2019). Looking forward: The role of hope in information system continuance. Computers in Human Behavior, 91, 127–137. https://doi.org/10.1016/j.chb.2018.09.002
Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382–388. https://doi.org/10.1177/002224378101800313
Foroughi, B., Iranmanesh, M., & Hyun, S. S. (2019). Understanding the determinants of mobile banking continuance us-age intention. Journal of Enterprise Information Management, 32(6), 1015–1033. https://doi.org/10.1108/JEIM-10-2018-0237
Gartner. (2016). Gartner Survey Shows Wearable Devices Need to Be More Useful. https://www.gartner.com/en/newsroom/press-releases/2016-12-07-gartner-survey-shows-wearable-devices-need-to-be-more-useful
Global Finance. (2020). Kuwait Startups: Seeding Tomorrow’s Giants. https://www.gfmag.com/magazine/january-2020/kuwait-startups-seeding-tomorrows-giants
Hair, J. F., Hollingsworth, C., Randolph, A., & Chong, A. (2017). An updated and expanded assessment of PLS-SEM in in-formation systems research. Industrial Management & Data Systems, 117(3), 442–458. https://doi.org/10.1108/IMDS-04-2016-0130
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. Eu-ropean Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
Hair, J. F., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128
Hammouri, Q., & Abu-Shanab, E. A. (2020). Major Factors Influencing the Adoption of Cloud Computing in Jordan. In-ternational Journal of Technology and Human Interaction, 16(4), 55-69.
Hammouri, Q. M., Abu-Shanab, E. A., & Nusairat, N. M. (2021). Attitudes Toward Implementing E-Government in Health Insurance Administration. International Journal of Electronic Government Research, 17(2), 1-18.
Hammouri, Q., Al-Gasawneh, J., Abu-Shanab, E., Nusairat, N., & Akhorshaideh, H. (2021). Determinants of the continu-ous use of mobile apps: The mediating role of users' awareness and the moderating role of customer focus. Interna-tional Journal of Data and Network Science, 5(4), 667-680.
Hammouri, Q., Altaher, A., Al-Gasawneh, J., Rabaa'i, A., Aloqool, A., and Khataybeh, H. (2022). Understanding the deter-minants of digital shopping features: The role of promo code on customer behavioral intention, International Journal of Data and Network Science. DOI: 10.5267/j.ijdns.2022.4.009
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-0382
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The Use of Partial Least Squares Path Modeling in International Marketing. In R. R. Sinkovics & P. N. Ghauri (Eds.), New Challenges to International Marketing (Vol. 20, pp. 277–319). Emerald Group Publishing Limited. https://doi.org/10.1108/S1474-7979(2009)0000020014
Hong, J.-C., Lin, P.-H., & Hsieh, P.-C. (2017). The effect of consumer innovativeness on perceived value and continuance intention to use smartwatch. Computers in Human Behavior, 67, 264–272. https://doi.org/10.1016/j.chb.2016.11.001
Hong, S., Thong, J. Y. L., & Tam, K. Y. (2006). Understanding continued information technology usage behavior: A com-parison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819–1834. https://doi.org/10.1016/j.dss.2006.03.009
Hsiao, K.-L., & Chen, C.-C. (2018). What drives smartwatch purchase intention? Perspectives from hardware, software, design, and value. Telematics and Informatics, 35(1), 103–113. https://doi.org/10.1016/j.tele.2017.10.002
Hsu, C.-L., Lin, Y.-H., Chen, M.-F., & Suraphatchara, K. (2019). Understanding foreign students’ continuance intention toward mobile telecommunication service: An integrative theoretical model. International Journal of Electronic Com-merce Studies, 9(2), 93–118. https://doi.org/10.7903/ijecs.1601
Huang, Y.-M. (2016). The factors that predispose students to continuously use cloud services: Social and technological perspectives. Computers & Education, 97, 86–96. https://doi.org/10.1016/j.compedu.2016.02.016
Huang, Y.-M. (2019). Examining students’ continued use of desktop services: Perspectives from expectation-confirmation and social influence. Computers in Human Behavior, 96, 23–31. https://doi.org/10.1016/j.chb.2019.02.010
Ifinedo, P. (2018). Determinants of students’ continuance intention to use blogs to learn: An empirical investigation. Be-haviour & Information Technology, 37(4), 381–392. https://doi.org/10.1080/0144929X.2018.1436594
Jeong, S. C., Kim, S.-H., Park, J. Y., & Choi, B. (2017). Domain-specific innovativeness and new product adoption: A case of wearable devices. Telematics and Informatics, 34(5), 399–412. https://doi.org/10.1016/j.tele.2016.09.001
Kalantari, M. (2017). Consumers’ adoption of wearable technologies: Literature review, synthesis, and future research agenda. International Journal of Technology Marketing, 12(3), 274–307. https://doi.org/10.1504/IJTMKT.2017.089665
Kenny, D. (2018). Moderator Variables. http://davidakenny.net/cm/moderation.htm
Kim, K. J. (2016). Round or Square? How Screen Shape Affects Utilitarian and Hedonic Motivations for Smartwatch Adoption. Cyberpsychology, Behavior, and Social Networking, 19(12), 733–739. https://doi.org/10.1089/cyber.2016.0136
Kim, T., & Chiu, W. (2018). Consumer acceptance of sports wearable technology: The role of technology readiness. Inter-national Journal of Sports Marketing and Sponsorship, 20(1), 109–126. https://doi.org/10.1108/IJSMS-06-2017-0050
Kline, R. B. (2016). Principles and Practice of Structural Equation Modeling, Fourth Edition. Guilford Publications.
Krey, N., Chuah, S. H.-W., Ramayah, T., & Rauschnabel, P. A. (2019). How functional and emotional ads drive smartwatch adoption: The moderating role of consumer innovativeness and extraversion. Internet Research, 29(3), 578–602. https://doi.org/10.1108/IntR-12-2017-0534
Lee, E.-J. (2020). Gender influence in the effect of design aesthetics on perceived product value of wearables. Internation-al Journal of Advanced Culture Technology, 8(2), 129–138. https://doi.org/10.17703/IJACT.2020.8.2.129
Leong, L.-Y., Hew, T.-S., Ooi, K.-B., & Wei, J. (2020). Predicting mobile wallet resistance: A two-staged structural equa-tion modeling-artificial neural network approach. International Journal of Information Management, 51, 102047. https://doi.org/10.1016/j.ijinfomgt.2019.102047
Liébana-Cabanillas, F., Marinkovic, V., Ramos De Luna, I., & Kalinic, Z. (2018). Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129, 117–130. https://doi.org/10.1016/j.techfore.2017.12.015
Limayem, M., Hirt, S. G., & Cheung, C. M. K. (2007). How Habit Limits the Predictive Power of Intention: The Case of Information Systems Continuance. MIS Quarterly, 31(4), 705–737. https://doi.org/10.2307/25148817
Nam, J., Hamlin, R., Gam, H. J., Kang, J. H., Kim, J., Kumphai, P., Starr, C., & Richards, L. (2007). The fashion-conscious behaviours of mature female consumers. International Journal of Consumer Studies, 31(1), 102–108. https://doi.org/10.1111/j.1470-6431.2006.00497.x
Nanda, P., Bos, J., Kramer, K., Hay, C., & Ignacz, J. (2008). Effect of smartphone aesthetic design on users’ emotional re-action: An empirical study. The TQM Journal, 20(4), 348–355. https://doi.org/10.1108/17542730810881339
Nelson, E. C., Verhagen, T., & Noordzij, M. L. (2016). Health empowerment through activity trackers: An empirical smart wristband study. Computers in Human Behavior, 62, 364–374. https://doi.org/10.1016/j.chb.2016.03.065
Nunnally, C., & Bernstein, H. (1994). Psychometric Theory (3rd ed.). McGrawHill.
Nusairat, N., Al-Gasawneh, J., Aloqool, A., Alzubi, K., Akhorshaideh, A., Joudeh, J., & Ibrahim, H. (2021). The relation-ship between Internet of things and search engine optimization in Jordanian Tele-Communication Companies: The mediating role of user behavior. International Journal of Data and Network Science, 5(3), 163-172.
Ogbanufe, O., & Gerhart, N. (2018). Watch It! Factors Driving Continued Feature Use of the Smartwatch. International Journal of Human–Computer Interaction, 34(11), 999–1014. https://doi.org/10.1080/10447318.2017.1404779
Oliver, R. (1980). A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. Journal of Market-ing Research, 17(4), 460–469. https://doi.org/10.1177/002224378001700405
Oliver, R. (1997). Satisfaction: A Behavioral Perspective on the Consumer. McGraw Hill.
Pal, D., Funilkul, S., & Vanijja, V. (2020). The future of smartwatches: Assessing the end-users’ continuous usage using an extended expectation-confirmation model. Universal Access in the Information Society, 19(2), 261–281. https://doi.org/10.1007/s10209-018-0639-z
Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879
Potnis, D., Demissie, D., & Deosthali, K. (2017). Students’ intention to adopt Internet-based personal safety wearable de-vices: Extending UTAUT with trusting belief. First Monday. https://doi.org/10.5210/fm.v22i9.7808
Rabaa’i, A. A. (2012). Evaluating the success of large-scale, integrated information systems through the lens of IS-impact and IS-support. [PhD thesis]. Queensland University of Technology.
Rabaai, A. A. (2015). An Empirical Investigation on the Adoption of e-Government in Developing Countries: The Case of Jordan. Computer and Information Science, 8(3), 83. https://doi.org/10.5539/cis.v8n3p83
Rabaa’i, A. A. (2016). Extending the technology acceptance model (TAM) to assess students’ behavioural intentions to adopt an e-learning system: The case of moodle as a learning tool. Journal of Emerging Trends in Engineering and Ap-plied Sciences, 7(1), 13–30.
Rabaa’i, A. A. (2017a). Holistic Procedures for Contemporary Formative Construct Validation Using PLS: A Comprehen-sive Example. International Journal of Business Information Systems, 25(3), 279–318. https://doi.org/10.1504/IJBIS.2017.084436
Rabaa’i, A. A. (2017b). The use of UTAUT to investigate the adoption of e-government in Jordan: A cultural perspective. International Journal of Business Information Systems, 24(3), 285–315. https://doi.org/10.1504/IJBIS.2017.082037
Rabaa’i, A. A. (2022). What’s for Dinner? Factors Contributing to the Continuous Usage of Food Delivery Apps (FDAs). Asia Pacific Journal of Information Systems.
Rabaa’i, A. A., & Abu ALMaati, S. (2021). Exploring the Determinants of Users’ Continuance Intention to Use Mobile Banking Services in Kuwait: Extending the Expectation-Confirmation Model. Asia Pacific Journal of Information Sys-tems, 3, 141–184. https://doi.org/10.14329/apjis.2021.31.2.141
Rabaa’i, A. A., ALmaati, S. A., & Zhu, X. (2021). Students’ Continuance Intention to Use Moodle: An Expectation-Confirmation Model Approach. Interdisciplinary Journal of Information, Knowledge, and Management, 16, 397–434. https://doi.org/10.28945/4842
Rabaa’i, A. A., Bhat, H., & Abu Al Maati, S. (2018). Theorising social networks addiction: An empirical investigation. In-ternational Journal of Social Media and Interactive Learning Environments, 6(1), 1. https://doi.org/10.1504/IJSMILE.2018.10013518
Rabaa’i, A. A., Tate, M., & Gable, G. (2015). Can’t See the Trees for the Forest? Why IS-SERVQUAL Items Matter. Asia Pacific Journal of Information Systems, 25(2), 211–238. https://doi.org/10.14329/apjis.2015.25.2.211
Rabaa’i, A. A., & Zhu, X. (2021). Understanding the Determinants of Wearable Payment Adoption: An Empirical Study. Interdisciplinary Journal of Information, Knowledge, and Management, 16, 173–211. https://doi.org/10.28945/4746
Rabaai, A. A., Zogheib, B., AlShatti, A., & AlJamal, E. M. (2015). Adoption of E-Government in Developing Countries: The Case of the State of Kuwait. Journal of Global Research in Computer Science, 6(10), 6–21.
Rabaa’i, A. A. (in press a). An Investigation into the acceptance of mobile wallets in the FinTech era: an empirical study from Kuwait. International Journal of Business Information Systems. DOI: 10.1504/IJBIS.2021.10038422
Rabaa’i, A. A. (in press b). Factors affecting the adoption of mobile grocery delivery applications. International Journal of Business Information Systems. DOI: 10.1504/IJBIS.2021.10045250
Rabaa’i, A. A. (in press c). FinTech in Kuwait: a survey study. International Journal of Business Information Systems. DOI: 10.1504/IJBIS.2021.10042271
Rahi, S., Abd. Ghani, M., Alnaser, F. M., & Ngah, A. H. (2018). Investigating the role of unified theory of acceptance and use of technology (UTAUT) in internet banking adoption context. Management Science Letters, 173–186. https://doi.org/10.5267/j.msl.2018.1.001
Rauschnabel, P. A., Brem, A., & Ivens, B. S. (2015). Who will buy smart glasses? Empirical results of two pre-market-entry studies on the role of personality in individual awareness and intended adoption of Google Glass wearables. Computers in Human Behavior, 49, 635–647. https://doi.org/10.1016/j.chb.2015.03.003
Rauschnabel, P. A., Hein, D. W. E., He, J., Ro, Y. K., Rawashdeh, S., & Krulikowski, B. (2016). Fashion or Technology? A Fashnology Perspective on the Perception and Adoption of Augmented Reality Smart Glasses. I-Com, 15(2), 179–194. https://doi.org/10.1515/icom-2016-0021
Reimann, M., Zaichkowsky, J., Neuhaus, C., Bender, T., & Weber, B. (2010). Aesthetic package design: A behavioral, neu-ral, and psychological investigation. Journal of Consumer Psychology, 20(4), 431–441. https://doi.org/10.1016/j.jcps.2010.06.009
Ringle, C., Wende, S., & Becker, J. (2015). SmartPLS 3. Boenningstedt: SmartPLS GmbH. http://www.smartpls.com
Sabah, N. M. (2020). Motivation factors and barriers to the continuous use of blended learning approach using Moodle: Students’ perceptions and individual differences. Behaviour & Information Technology, 39(8), 875–898. https://doi.org/10.1080/0144929X.2019.1623323
Sabbir, M., Akter, S., Khan, T., & Das, A. (2020). Exploring Factors Affecting Consumers’ Intention to Use Smartwatch in Bangladesh: An Empirical Study. Asia Pacific Journal of Information Systems, 30, 636–663. https://doi.org/10.14329/apjis.2020.30.3.636
Sarstedt, M., Ringle, C. M., Smith, D., Reams, R., & Hair, J. F. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105–115. https://doi.org/10.1016/j.jfbs.2014.01.002
Shao, Z. (2018). Examining the impact mechanism of social psychological motivations on individuals’ continuance inten-tion of MOOCs: The moderating effect of gender. Internet Research, 28(1), 232–250. https://doi.org/10.1108/IntR-11-2016-0335
Sharma, S. K., Sharma, H., & Dwivedi, Y. K. (2019). A Hybrid SEM-Neural Network Model for Predicting Determinants of Mobile Payment Services. Information Systems Management, 36(3), 243–261. https://doi.org/10.1080/10580530.2019.1620504
Sonderegger, A., & Sauer, J. (2010). The influence of design aesthetics in usability testing: Effects on user performance and perceived usability. Applied Ergonomics, 41(3), 403–410. https://doi.org/10.1016/j.apergo.2009.09.002
Spreng, R. A., MacKenzie, S. B., & Olshavsky, R. W. (1996). A Reexamination of the Determinants of Consumer Satisfac-tion. Journal of Marketing, 60(3), 15–32. https://doi.org/10.1177/002224299606000302
Statista. (2021). Global wearable device end-user spending by category 2019-2022. https://www.statista.com/statistics/1065271/wearable-devices-worldwide-spending/
Stiglbauer, B., Weber, S., & Batinic, B. (2019). Does your health really benefit from using a self-tracking device? Evi-dence from a longitudinal randomized control trial. Computers in Human Behavior, 94, 131–139. https://doi.org/10.1016/j.chb.2019.01.018
Straub, D., & Gefen, D. (2004). Validation Guidelines for IS Positivist Research. Communications of the Association for Information Systems, 13. https://doi.org/10.17705/1CAIS.01324
Tam, C., Santos, D., & Oliveira, T. (2018). Exploring the Influential Factors of Continuance Intention to Use Mobile Apps: Extending the Expectation Confirmation Model. Information Systems Frontiers, 22(1), 243–257. https://doi.org/10.1007/s10796-018-9864-5
Tran, L. T. T., Pham, L. M. T., & Le, L. T. (2019). E-Satisfaction and Continuance Intention: The Moderator Role of Online Ratings. International Journal of Hospitality Management, 77, 311–322. https://doi.org/10.1016/j.ijhm.2018.07.011
Turhan, G. (2013). An assessment towards the acceptance of wearable technology to consumers in Turkey: The application to smart bra and t-shirt products. The Journal of The Textile Institute, 104(4), 375–395. https://doi.org/10.1080/00405000.2012.736191
Vandrico. (2021). The wearables database. https ://vandr ico.com/weara bles/
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478. JSTOR. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178. JSTOR. https://doi.org/10.2307/41410412
Wang, W.-T., Ou, W.-M., & Chen, W.-Y. (2019a). The Impact of Inertia and User Satisfaction on the Continuance Inten-tions to Use Mobile Communication Applications: A Mobile Service Quality Perspective. International Journal of In-formation Management, 44, 178–193. https://doi.org/10.1016/j.ijinfomgt.2018.10.011
Yang, H., Yu, J., Zo, H., & Choi, M. (2016). User acceptance of wearable devices: An extended perspective of perceived value. Telematics and Informatics, 33(2), 256–269. https://doi.org/10.1016/j.tele.2015.08.007
Yoon, C., & Rolland, E. (2015). Understanding Continuance Use in Social Networking Services. Journal of Computer In-formation Systems, 55(2), 1–8. https://doi.org/10.1080/08874417.2015.11645751
Zhou, J. (2017). Exploring the factors affecting learners’ continuance intention of MOOCs for online collaborative learn-ing: An extended ECM perspective. Australasian Journal of Educational Technology. https://doi.org/10.14742/ajet.2914
Zogheib, B., Rabaa’i, A., Zogheib, S., & Elsaheli, A. (2015). University Student Perceptions of Technology Use in Mathe-matics Learning. Journal of Information Technology Education: Research, 14, 417–438. https://doi.org/10.28945/2315