How to cite this paper
Nikam, D., Jain, A., Vetale, S., Bhange, A & Jadhav, S. (2024). Synthesis and evaluation of novel thiophene-dhpms designed having anti-breast cancer potential.Current Chemistry Letters, 13(4), 717-724.
Refrences
1. Sung H., Ferlay J., Siegel RL.(2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: CA Cancer J Clin, 71(3) 209-249.
2. Sharma GN., DaveR., Sanadya.(2010)Various types and management of breast cancer: an overview. J Adv PharmTechnol Res, 1(2) 109.
3. World,Cancer,Who.int.(2022).https://www.who.int/news-room/factsheets/detail/cancer.
4. AkramM., Iqbal M., Daniyal M. (2017) Awareness and current knowledge of breast cancer. Biol.Res, 501-23.
5. Li R, Hettiarachchy N., & Mahadevan M. (2014) Apoptotic pathways in human breast cancer cell models (MCF-7 and MDA-MB-231) induced by rice bran derived pentapeptide. Int J Res Med Health Sci, 4(5)13-21.
6. Biginelli CP.(1893) Aldehyde-urea derivatives of aceto-and oxaloacetic acids. Gazz. chim. ital, 23(1)360-413.
7. Sondhi SM., Goyal RN., Lahoti AM. (2005) Synthesis and biological evaluation of 2-thiopyrimidine derivatives. Bioorg Med Chem, 13(9)3185-3195.
8. ShaikhA.& Meshram J.(2016) Novel 1, 3, 4‐Oxadiazole Derivatives of Dihydropyrimidinones: Synthesis, Anti Inflammatory, Anthelmintic, and Antibacterial Activity Evaluation. J Heterocycl Chem, 53(4) 1176-1182.
9. Bhat MA., Al-Dhfyan A., Al-Omar MA.(2016) Targeting cancer stem cells with novel 4-(4-substituted phenyl)-5-(3, 4, 5-trimethoxy/3, 4-dimethoxy)-benzoyl-3, 4-dihydropyrimidine2(1H)one/thiones. Mol, 21(12)1746.
10. Ragab FA., Abou-Seri SM., Abdel-Aziz.(2017) Design, synthesis and anticancer activity of new monastrol analogues bearing 1, 3, 4-oxadiazole moiety. Eur J Med Chem, 138140-151.
11. Perużyńska M., Borzyszkowska-Ledwig A., Sośnicki JG.(2021) Synthesis and Anticancer Activity of Mitotic-Specific 3, 4-Dihydropyridine-2 (1 H)-thiones. Int J MolSci, 22(5)2462.
12. VermaM., & Verma PK. (2022)Synthesis, characterization, antimicrobial and anticancer evaluation of pyrimidines Clubbed with thiazolidinone.J Med Pharm Allied Sci, 11 (2)4582–4587.
13. Farghaly AM., AboulWafa OM., Elshaier YA.(2019) Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores. Med Chem Res, 28360-379.
14. Venugopala KN., Chandrashekharappa S., Tratrat C. (2021) Crystallography, molecular modeling, and COX-2 inhibition studies on indolizine derivatives. Mol, 26(12) 3550.
15. KumarasamyD., Roy BG., Rocha-Pereira J. (2017) Synthesis and in vitro antiviral evaluation of 4-substituted 3, 4-dihydropyrimidinones. Bioorgmed chem lett, 27(2)139-142.
16. Bhalgat CM., & Ramesh B.(2014) Synthesis, antimicrobial screening and structure–activity relationship of novel pyrimidines and their thioethers. BullFac Pharm Cairo Univ, 52(2)259-267.
17. Yadav S., Lim SM., Ramasamy K.(2018) Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of 2-(1-benzoyl-1H-benzo [d] imidazol-2-ylthio)-N-substituted acetamides. Chem Cent J, 12(1)1-14.
18. El-Malah A., Mahmoud Z., Hamed Salem H.(2021) Design, ecofriendly synthesis, anticancer and antimicrobial screening of innovative Biginellidihydropyrimidines using β-aroylpyruvates as synthons. Green Chem LettRev, 14(2) 221-233.
19. Jalali. (2021) Antimicrobial evaluation of some novel derivatives of 3,4-dihydropyrimidine-2(1H)-one. Res Pharm Sci, 7.
20. Patel N., Pathan S., & Soni HI.(2019) 3, 4-dihydropyrimidin-2 (1h)-one analogues: Microwave irradiated synthesis with antimicrobial and antituberculosis study. CurrMicrow Chem, 6(1)61-70.
21. Shaikh S., Shaikh NP., Salunke SD.(2015) Synthesis and Antimicrobial Activity of new 3, 4-Dihydropyrimidinones via Novel Chalcone Series. Heterocycl Lett, 5(3)443-449.Doi:
22. Wu W., Lan W., Wu C. (2021) Synthesis and antifungal activity of pyrimidine derivatives containing an amide moiety. Frontchem, 9695628.
23. Siva Ranjani J., Selvinthanuja C., Sivakumar T. (2022)195 Synthesis, characterization and antifungal activity of azo coupled dihydropyrimidinones. JPharmChem, 8.
24. Wani MY., Ahmad A., Kumar S. (2017) Flucytosine analogues obtained through Biginelli reaction as efficient combinative antifungal agents. Microbpatho, 10557-62.
25. Shah UA., Joshi HV., PatelJK. (2020) Molecular docking studies of novel dihydro Pyrimidine derivatives as potential antibacterial agents. Mol Divers, 241165-76.
26. De Oliveira FS., De Oliveira PM., Farias LM. (2018) Synthesis and antitumoral activity of novel analogues monastrol–fatty acids against glioma cells. Med Chem Comm, 9(8)1282-1288.
27. Tardiff DF., Brown LE., Yan X. (2017)Dihydropyrimidine-thiones and clioquinol synergize to target β-amyloid cellular pathologies through a metal-dependent mechanism. ACSChem Neurosci, 8(9)2039-2055.
28. Mishra R., Sachan N., Kumar N. (2018) Thiophene scaffold as prospective antimicrobial agent: A Review. JHeterocycl Chem, 55(9)2019-2034.
29. Chawla S., Sharma S., Kashid S. (2023) Therapeutic potential of thiophene compounds: a mini-review. Mini RevMed Chem.231514–1534.
30. Pathania S., & Chawla PA.(2020) Thiophene-based derivatives as anticancer agents: An overview on decade’s work. Bioorg Chem, 101104026.
31. de Vasconcelos A., Campos VF., Nedel F. (2013) Cytotoxic and apoptotic effects of chalcone derivatives of 2-acetyl thiophene on human colon adenocarcinoma cells. Cell Biochem Func, 31(4)289-297.
32. Schmitt C., Kail D., Mariano M(2014) Design and synthesis of a library of lead-like 2, 4-bisheterocyclic substituted thiophenes as selective Dyrk/Clk inhibitors. PLOS One, 9(3)87851.
33. Al-Said MS., Bashandy MS., Al-Qasoumi SI. (2011) Anti-breast cancer activity of some novel 1, 2-dihydropyridine, thiophene and thiazole derivatives. EurJMed Chem, 46(1)137-141.
34. Dallemagne P., Khanh LP., Alsaı̈di A. (2002) Synthesis and biological evaluation of cyclopenta [c] thiophene related compounds as new antitumor agents. Bioorg& med chem, 10(7)2185-2191.
35. Venkataramireddy V., Shankaraiah V., Rao A. (2016) Synthesis and anti-cancer activity of novel 3-aryl thiophene-2-carbaldehydes and their aryl/heteroaryl chalcone derivatives. Rasayan JChem, 9(1)31-39.
36. Sable PN., Ganguly S., & Chaudhari PD. (2014) An efficient one-pot three-component synthesis and antimicrobial evaluation of tetra substituted thiophene derivatives. Chin Chem Lett, 25(7)1099-1103.
37. Harit T., Bellaouchi R., Asehraou A. (2017) Synthesis, characterization, antimicrobial activity and theoretical studies of new thiophene-based tripodal ligands. JMol Struct, 113374-79.
38. Gawdzik B., Kowalczyk P.,Koszelewski D. (2022) The Evaluation of DHPMs as Biotoxic Agents on Pathogen Bacterial Membranes. Memb, 12(2)238.
39. Sulthana SS., Antony SA, Balachandran C. (2015) Thiophene and benzodioxole appended thiazolyl-pyrazoline compounds: Microwave assisted synthesis, antimicrobial and molecular docking studies. Bioorg MedChem Lett, 25(14)2753-2757.
40. Ashour HM., Shaaban OG., Rizk OH. (2013) Synthesis and biological evaluation of thieno [2′, 3′: 4, 5] pyrimido [1, 2-b][1, 2, 4] triazines and thieno [2, 3-d][1, 2, 4] triazolo [1, 5-a] pyrimidines as anti-inflammatory and analgesic agents. Eur j med chem, 62341-351.
41. Mathew B., Suresh., & Anbazhagan S. (2014) Synthesis, in silico preclinical evaluation, antidepressant potential of 5-substituted phenyl-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazole-1-carboxamides. Biomed Aging Pathol, 4(4) 327-333.
42. Kulandasamy R., Adhikari AV., & Stables JP(2009) A new class of anticonvulsants possessing 6 Hz activity: 3, 4-dialkyloxy thiophene bishydrazones. Eur J Med Chem, 44(11)4376-4384.
43. Matos LHS., Masson FT., Simeoni LA. (2018) Biological activity of dihydropyrimidinone (DHPM) derivatives: A systematic review. EurJMed Chem, 1431779-1789.
44. Mayer TU., Kapoor TM., Haggarty SJ. (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Sci, 286(5441)971-974.
45. Brier S., Lemaire D., DeBonis S. (2004) Identification of the protein binding region of S-trityl-L-cysteine, a new potent inhibitor of the mitotic kinesin Eg5. Biochem, 43(41)13072-13082.
46. Garcia-Saez I., &Skoufias DA.(2021)Eg5 targeting agents: From new anti-mitotic based inhibitor discovery to cancer therapy and resistance. BiochemPharmacol, 184114364.
47. Luo L., Carson JD., Dhanak D. (2004) Mechanism of inhibition of human KSP by monastrol: insights from kinetic analysis and the effect of ionic strength on KSP inhibition. Biochem, 43(48)15258-15266.
48. Cochran JC., Gatial JE., Kapoor TM. (2005) Monastrol inhibition of the mitotic kinesin Eg5. J Biol Chem, 280(13)12658-12667.
49. Nikam D., & Jain A. (2022) Advances in the discovery of DHPMs as Eg5 inhibitors for the management of breast cancer and glioblastoma: A review. Results Chem, (5)100718.
50. E. Scholar., Raloxifene., Elsevier EBooks, (2009) 1–6.
51. Clark DE., & Pickett SD. (2000) Computational methods for the prediction of ‘drug-likeness. Drug discov today, 5(2)49-58.
52. Lipinski CA., Lombardo F., Dominy BW. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv drug deliv Rev, 23(1-3)3-25.
53. Tawfik, H. O., El-Moselhy, T. F., El-Din, N. S., & El-Hamamsy, M. H. (2019) Design, synthesis, and bioactivity of dihydropyrimidine derivatives as kinesin spindle protein inhibitors. Bioorg MedChem, 27(23)115126.
54. McGill M.R., Findley D.L., Mazur A., Yee E.U., Allard F.D., Powers A., Coward L., Blough E.R., Gorman G., Hambuchen M.D.(2022) Radiation Effects on Methamphetamine Pharmacokinetics and Pharmacodynamics in Rats. Eur J Drug Metab Pharmacokinet, 47 (3) 319–330.
55. Boggess T., Williamson J.C., Niebergall E.B., Sexton H., Mazur A., Egleton R.D., Grover L.M., Christopher W. R.(2021) Alterations in Excitatory and Inhibitory Synaptic Development Within the Mesolimbic Dopamine Pathway in a Mouse Model of Prenatal Drug Exposure. Front Pediatr, (9) 794544
56. Berquist M.D., McGill M.R., Mazur A., Findley D.L., Gorman G., Jones C.B., Hambuchen M.D.(2020) Effect of bile duct ligation-induced liver dysfunction on methamphetamine pharmacokinetics in male and female rats. Drug Alcohol Depend, (215)108190
57. Chen X., Denning K.L., Mazur A., Lawrence L.M., Wang X., Lu Y. (2023)Under peroxisome proliferation acyl-CoA oxidase coordinates with catalase to enhance ethanol metabolism. Free Radical Biol Med, (208) 221–228.
58. Saber A.F. & Ahmed F.M. (2021) (E)-1,2-Diphenylethene-based conjugated nanoporous polymers for a superior adsorptive removal of dyes from water. New J Chem, 45(46) 21834–21843.
59. Saber A.F., Chen K.-Y., Ahmed F.M., Kuo S.-W. (2021) Designed azo-linked conjugated microporous polymers for CO2 uptake and removal applications, J Polym Res, 28(11) 430
60. Saber A.F., Elewa A.M., Chou H.-H., Ahmed F.M. (2023)Donor to Acceptor Charge Transfer in Carbazole‐based Conjugated Microporous Polymers for Enhanced Visible‐Light‐Driven Photocatalytic Water Splitting. Chem Cat Chem, 15(3) e202201287.
61. Zaki R.M., Saber A.F., Kamal A.M., & Radwan S.M.(2020) A concise review on synthesis, reactions and biological Importance of thienopyrazoles, Arkivoc, (1) 011-108.
62. Bakri Y.E.,Mohamed S.K., Saravanan K., Ahmad S., Mahmoud A.A., Shaban., El-Sayed W.M., Mague J.T., Said S. G. (2023) 1,4,9,9-tetramethyloctahydro-4,7-(epoxymethano)azulen-5(1H)-one, a natural product as a potential inhibitor of COVID-19: Extraction, crystal structure, and virtual screening approach, J King Saud Univ Sci, 35(4) 102628–102628.
63. Drar A.M., Abdel-Raheem S.A.A., Moustafa A.H., Hussein B.R.M. (2023) Studying the toxicity and structure-activity relationships of some synthesized polyfunctionalized pyrimidine compounds as potential insecticide, Curr Chem Lett. 12(3) 499–508.
2. Sharma GN., DaveR., Sanadya.(2010)Various types and management of breast cancer: an overview. J Adv PharmTechnol Res, 1(2) 109.
3. World,Cancer,Who.int.(2022).https://www.who.int/news-room/factsheets/detail/cancer.
4. AkramM., Iqbal M., Daniyal M. (2017) Awareness and current knowledge of breast cancer. Biol.Res, 501-23.
5. Li R, Hettiarachchy N., & Mahadevan M. (2014) Apoptotic pathways in human breast cancer cell models (MCF-7 and MDA-MB-231) induced by rice bran derived pentapeptide. Int J Res Med Health Sci, 4(5)13-21.
6. Biginelli CP.(1893) Aldehyde-urea derivatives of aceto-and oxaloacetic acids. Gazz. chim. ital, 23(1)360-413.
7. Sondhi SM., Goyal RN., Lahoti AM. (2005) Synthesis and biological evaluation of 2-thiopyrimidine derivatives. Bioorg Med Chem, 13(9)3185-3195.
8. ShaikhA.& Meshram J.(2016) Novel 1, 3, 4‐Oxadiazole Derivatives of Dihydropyrimidinones: Synthesis, Anti Inflammatory, Anthelmintic, and Antibacterial Activity Evaluation. J Heterocycl Chem, 53(4) 1176-1182.
9. Bhat MA., Al-Dhfyan A., Al-Omar MA.(2016) Targeting cancer stem cells with novel 4-(4-substituted phenyl)-5-(3, 4, 5-trimethoxy/3, 4-dimethoxy)-benzoyl-3, 4-dihydropyrimidine2(1H)one/thiones. Mol, 21(12)1746.
10. Ragab FA., Abou-Seri SM., Abdel-Aziz.(2017) Design, synthesis and anticancer activity of new monastrol analogues bearing 1, 3, 4-oxadiazole moiety. Eur J Med Chem, 138140-151.
11. Perużyńska M., Borzyszkowska-Ledwig A., Sośnicki JG.(2021) Synthesis and Anticancer Activity of Mitotic-Specific 3, 4-Dihydropyridine-2 (1 H)-thiones. Int J MolSci, 22(5)2462.
12. VermaM., & Verma PK. (2022)Synthesis, characterization, antimicrobial and anticancer evaluation of pyrimidines Clubbed with thiazolidinone.J Med Pharm Allied Sci, 11 (2)4582–4587.
13. Farghaly AM., AboulWafa OM., Elshaier YA.(2019) Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores. Med Chem Res, 28360-379.
14. Venugopala KN., Chandrashekharappa S., Tratrat C. (2021) Crystallography, molecular modeling, and COX-2 inhibition studies on indolizine derivatives. Mol, 26(12) 3550.
15. KumarasamyD., Roy BG., Rocha-Pereira J. (2017) Synthesis and in vitro antiviral evaluation of 4-substituted 3, 4-dihydropyrimidinones. Bioorgmed chem lett, 27(2)139-142.
16. Bhalgat CM., & Ramesh B.(2014) Synthesis, antimicrobial screening and structure–activity relationship of novel pyrimidines and their thioethers. BullFac Pharm Cairo Univ, 52(2)259-267.
17. Yadav S., Lim SM., Ramasamy K.(2018) Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of 2-(1-benzoyl-1H-benzo [d] imidazol-2-ylthio)-N-substituted acetamides. Chem Cent J, 12(1)1-14.
18. El-Malah A., Mahmoud Z., Hamed Salem H.(2021) Design, ecofriendly synthesis, anticancer and antimicrobial screening of innovative Biginellidihydropyrimidines using β-aroylpyruvates as synthons. Green Chem LettRev, 14(2) 221-233.
19. Jalali. (2021) Antimicrobial evaluation of some novel derivatives of 3,4-dihydropyrimidine-2(1H)-one. Res Pharm Sci, 7.
20. Patel N., Pathan S., & Soni HI.(2019) 3, 4-dihydropyrimidin-2 (1h)-one analogues: Microwave irradiated synthesis with antimicrobial and antituberculosis study. CurrMicrow Chem, 6(1)61-70.
21. Shaikh S., Shaikh NP., Salunke SD.(2015) Synthesis and Antimicrobial Activity of new 3, 4-Dihydropyrimidinones via Novel Chalcone Series. Heterocycl Lett, 5(3)443-449.Doi:
22. Wu W., Lan W., Wu C. (2021) Synthesis and antifungal activity of pyrimidine derivatives containing an amide moiety. Frontchem, 9695628.
23. Siva Ranjani J., Selvinthanuja C., Sivakumar T. (2022)195 Synthesis, characterization and antifungal activity of azo coupled dihydropyrimidinones. JPharmChem, 8.
24. Wani MY., Ahmad A., Kumar S. (2017) Flucytosine analogues obtained through Biginelli reaction as efficient combinative antifungal agents. Microbpatho, 10557-62.
25. Shah UA., Joshi HV., PatelJK. (2020) Molecular docking studies of novel dihydro Pyrimidine derivatives as potential antibacterial agents. Mol Divers, 241165-76.
26. De Oliveira FS., De Oliveira PM., Farias LM. (2018) Synthesis and antitumoral activity of novel analogues monastrol–fatty acids against glioma cells. Med Chem Comm, 9(8)1282-1288.
27. Tardiff DF., Brown LE., Yan X. (2017)Dihydropyrimidine-thiones and clioquinol synergize to target β-amyloid cellular pathologies through a metal-dependent mechanism. ACSChem Neurosci, 8(9)2039-2055.
28. Mishra R., Sachan N., Kumar N. (2018) Thiophene scaffold as prospective antimicrobial agent: A Review. JHeterocycl Chem, 55(9)2019-2034.
29. Chawla S., Sharma S., Kashid S. (2023) Therapeutic potential of thiophene compounds: a mini-review. Mini RevMed Chem.231514–1534.
30. Pathania S., & Chawla PA.(2020) Thiophene-based derivatives as anticancer agents: An overview on decade’s work. Bioorg Chem, 101104026.
31. de Vasconcelos A., Campos VF., Nedel F. (2013) Cytotoxic and apoptotic effects of chalcone derivatives of 2-acetyl thiophene on human colon adenocarcinoma cells. Cell Biochem Func, 31(4)289-297.
32. Schmitt C., Kail D., Mariano M(2014) Design and synthesis of a library of lead-like 2, 4-bisheterocyclic substituted thiophenes as selective Dyrk/Clk inhibitors. PLOS One, 9(3)87851.
33. Al-Said MS., Bashandy MS., Al-Qasoumi SI. (2011) Anti-breast cancer activity of some novel 1, 2-dihydropyridine, thiophene and thiazole derivatives. EurJMed Chem, 46(1)137-141.
34. Dallemagne P., Khanh LP., Alsaı̈di A. (2002) Synthesis and biological evaluation of cyclopenta [c] thiophene related compounds as new antitumor agents. Bioorg& med chem, 10(7)2185-2191.
35. Venkataramireddy V., Shankaraiah V., Rao A. (2016) Synthesis and anti-cancer activity of novel 3-aryl thiophene-2-carbaldehydes and their aryl/heteroaryl chalcone derivatives. Rasayan JChem, 9(1)31-39.
36. Sable PN., Ganguly S., & Chaudhari PD. (2014) An efficient one-pot three-component synthesis and antimicrobial evaluation of tetra substituted thiophene derivatives. Chin Chem Lett, 25(7)1099-1103.
37. Harit T., Bellaouchi R., Asehraou A. (2017) Synthesis, characterization, antimicrobial activity and theoretical studies of new thiophene-based tripodal ligands. JMol Struct, 113374-79.
38. Gawdzik B., Kowalczyk P.,Koszelewski D. (2022) The Evaluation of DHPMs as Biotoxic Agents on Pathogen Bacterial Membranes. Memb, 12(2)238.
39. Sulthana SS., Antony SA, Balachandran C. (2015) Thiophene and benzodioxole appended thiazolyl-pyrazoline compounds: Microwave assisted synthesis, antimicrobial and molecular docking studies. Bioorg MedChem Lett, 25(14)2753-2757.
40. Ashour HM., Shaaban OG., Rizk OH. (2013) Synthesis and biological evaluation of thieno [2′, 3′: 4, 5] pyrimido [1, 2-b][1, 2, 4] triazines and thieno [2, 3-d][1, 2, 4] triazolo [1, 5-a] pyrimidines as anti-inflammatory and analgesic agents. Eur j med chem, 62341-351.
41. Mathew B., Suresh., & Anbazhagan S. (2014) Synthesis, in silico preclinical evaluation, antidepressant potential of 5-substituted phenyl-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazole-1-carboxamides. Biomed Aging Pathol, 4(4) 327-333.
42. Kulandasamy R., Adhikari AV., & Stables JP(2009) A new class of anticonvulsants possessing 6 Hz activity: 3, 4-dialkyloxy thiophene bishydrazones. Eur J Med Chem, 44(11)4376-4384.
43. Matos LHS., Masson FT., Simeoni LA. (2018) Biological activity of dihydropyrimidinone (DHPM) derivatives: A systematic review. EurJMed Chem, 1431779-1789.
44. Mayer TU., Kapoor TM., Haggarty SJ. (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Sci, 286(5441)971-974.
45. Brier S., Lemaire D., DeBonis S. (2004) Identification of the protein binding region of S-trityl-L-cysteine, a new potent inhibitor of the mitotic kinesin Eg5. Biochem, 43(41)13072-13082.
46. Garcia-Saez I., &Skoufias DA.(2021)Eg5 targeting agents: From new anti-mitotic based inhibitor discovery to cancer therapy and resistance. BiochemPharmacol, 184114364.
47. Luo L., Carson JD., Dhanak D. (2004) Mechanism of inhibition of human KSP by monastrol: insights from kinetic analysis and the effect of ionic strength on KSP inhibition. Biochem, 43(48)15258-15266.
48. Cochran JC., Gatial JE., Kapoor TM. (2005) Monastrol inhibition of the mitotic kinesin Eg5. J Biol Chem, 280(13)12658-12667.
49. Nikam D., & Jain A. (2022) Advances in the discovery of DHPMs as Eg5 inhibitors for the management of breast cancer and glioblastoma: A review. Results Chem, (5)100718.
50. E. Scholar., Raloxifene., Elsevier EBooks, (2009) 1–6.
51. Clark DE., & Pickett SD. (2000) Computational methods for the prediction of ‘drug-likeness. Drug discov today, 5(2)49-58.
52. Lipinski CA., Lombardo F., Dominy BW. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv drug deliv Rev, 23(1-3)3-25.
53. Tawfik, H. O., El-Moselhy, T. F., El-Din, N. S., & El-Hamamsy, M. H. (2019) Design, synthesis, and bioactivity of dihydropyrimidine derivatives as kinesin spindle protein inhibitors. Bioorg MedChem, 27(23)115126.
54. McGill M.R., Findley D.L., Mazur A., Yee E.U., Allard F.D., Powers A., Coward L., Blough E.R., Gorman G., Hambuchen M.D.(2022) Radiation Effects on Methamphetamine Pharmacokinetics and Pharmacodynamics in Rats. Eur J Drug Metab Pharmacokinet, 47 (3) 319–330.
55. Boggess T., Williamson J.C., Niebergall E.B., Sexton H., Mazur A., Egleton R.D., Grover L.M., Christopher W. R.(2021) Alterations in Excitatory and Inhibitory Synaptic Development Within the Mesolimbic Dopamine Pathway in a Mouse Model of Prenatal Drug Exposure. Front Pediatr, (9) 794544
56. Berquist M.D., McGill M.R., Mazur A., Findley D.L., Gorman G., Jones C.B., Hambuchen M.D.(2020) Effect of bile duct ligation-induced liver dysfunction on methamphetamine pharmacokinetics in male and female rats. Drug Alcohol Depend, (215)108190
57. Chen X., Denning K.L., Mazur A., Lawrence L.M., Wang X., Lu Y. (2023)Under peroxisome proliferation acyl-CoA oxidase coordinates with catalase to enhance ethanol metabolism. Free Radical Biol Med, (208) 221–228.
58. Saber A.F. & Ahmed F.M. (2021) (E)-1,2-Diphenylethene-based conjugated nanoporous polymers for a superior adsorptive removal of dyes from water. New J Chem, 45(46) 21834–21843.
59. Saber A.F., Chen K.-Y., Ahmed F.M., Kuo S.-W. (2021) Designed azo-linked conjugated microporous polymers for CO2 uptake and removal applications, J Polym Res, 28(11) 430
60. Saber A.F., Elewa A.M., Chou H.-H., Ahmed F.M. (2023)Donor to Acceptor Charge Transfer in Carbazole‐based Conjugated Microporous Polymers for Enhanced Visible‐Light‐Driven Photocatalytic Water Splitting. Chem Cat Chem, 15(3) e202201287.
61. Zaki R.M., Saber A.F., Kamal A.M., & Radwan S.M.(2020) A concise review on synthesis, reactions and biological Importance of thienopyrazoles, Arkivoc, (1) 011-108.
62. Bakri Y.E.,Mohamed S.K., Saravanan K., Ahmad S., Mahmoud A.A., Shaban., El-Sayed W.M., Mague J.T., Said S. G. (2023) 1,4,9,9-tetramethyloctahydro-4,7-(epoxymethano)azulen-5(1H)-one, a natural product as a potential inhibitor of COVID-19: Extraction, crystal structure, and virtual screening approach, J King Saud Univ Sci, 35(4) 102628–102628.
63. Drar A.M., Abdel-Raheem S.A.A., Moustafa A.H., Hussein B.R.M. (2023) Studying the toxicity and structure-activity relationships of some synthesized polyfunctionalized pyrimidine compounds as potential insecticide, Curr Chem Lett. 12(3) 499–508.