How to cite this paper
Rimaz, M., Mousavi, H., Behnam, M., Sarvari, L & Khalili, B. (2017). Fast and convenient synthesis of new symmetric pyrano[2,3-d:6,5-d']dipyrimidinones by an organocatalyzed annulation reaction.Current Chemistry Letters, 6(2), 55-68.
Refrences
1 (a) Roopan S. M., Patil S. M., and Palaniraja, J (2016) Recent synthetic scenario on imidazo[1,2-a]pyridines chemical intermediate. Res. Chem. Intermed., 42 (4) 2749-2790. (b) Al-bogami A. S. (2015) One-pot, three-component synthesis of novel pyrano[3,2-c]coumarins containing sulfone moiety utilizing ultrasonic irradiation as eco-friendly energy source. Res. Chem. Intermed., 41 (1) 93-104. (c) Schenone, S., Radi M., Musumeci F., Brullo C., and Botta M. (2014) Biologically driven synthesis of pyrazolo[3,4-d]pyrimidines as protein kinase inhibitors: an old scaffold as a new tool for medicinal chemistry and chemical biology studies. Chem. Rev., 114 (14) 7189-7238. (d) Vignaroli G., Mencarelli M., Sementa D., Crespan E., Kissova M., Mega G., Schenone S., Radi M., and Botta M. (2014) Exploring the chemical space around the privileged pyrazolo[3,4-d]pyrimidine scaffold: toward novel allosteric inhibitors of T315I-Mutated Abl. ACS Comb. Sci., 16 (4) 168-175. (e) Aggrawal T., Imam M., Kaushik N. K., Chauhan V. S, and Verma A. K. (2011) Pyrano[4,3-b]quinolines library generation via iodocyclization and palladium-catalyzed coupling reactions. ACS Comb. Sci., 13 (5) 530-536. (f) Zhao F., Liu J., Ding K., Liu J., and Cai Q. (2011) Copper-Catalyzed Tandem Reaction of Isocyanides with N-(2-Haloaryl)propiolamides for the Synthesis of Pyrrolo[3,2-c]quinolin-4-ones. J. Org. Chem., 76 (13) 5346-5353.(g) Hinze M. E., Daughtry J. L., and Lewis C. A. (2015) Access to the surugatoxin alkaloids: chemo-, regio-, and stereoselective oxindole annulation. J. Org. Chem., 80 (22) 11258-11265. (h) Wan J-P., Zhong S., and Liu Y. (2015) Enaminone-based three-component reactions for the diastereoselective synthesis of fused tetrahydropyridines. Synthesis, 47 (22) 3611-3617. (i) Goel R., Luxami V., and paul K. (2015) Recent advances in development of imidazo[1,2-a]pyrazines: synthesis, reactivity and their biological applications. Org. Biomol. Chem., 13 (12) 3225-3555. (j) Kim H., Tung T. T., and Park S. B. (2013) Privileged substructure-based diversity-oriented synthesis pathway for diverse pyrimidine-embedded polyheterocycles.Org. Lett., 15 (22) 5814-5817. (k) Fu Z., Qian K., Shen T., and Song Q. (2016) MgCl2 catalyzed one-pot synthesis of 2-hydroxy-3-((5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)(phenyl)methyl)naphthalene-1,4-dione derivatives in EG. Tetrahedron Lett., 57 (10) 1104-1108. (l) Guo W-S., Wen L-R., and Li M. (2015) β-Ketothioamides: efficient reagents in the synthesis of heterocycles. Org. Biomol. Chem., 13 (7)1942-1953. (m) Kefayati H., Golshekan M., Shariati S., and Bagheri M. (2015) Fe3O4@MCM-48–SO3H: An efficient magnetically separable nanocatalyst for the synthesis of benzo[f]chromeno[2,3-d]pyrimidinones. Chin. J. Catal., 36 (4) 572-578.
2 (a) Fan X., Feng D., Qu Y., Zhang X., Wang J., Loiseau p. M., Andrei G., Snoeck R. and De Clercqe. (2011) Practical and efficient synthesis of pyrano[3,2-c]pyridone, pyrano[4,3-b]pyran and their hybrids with nucleoside as potential antiviral and antileishmanial agents. Bioorg. Med. Chem. Lett., 20 (3) 809-813. (b) Brahmachari G., and Banerjee B. (2014) Facile and one-Pot access of 3,3-bis(indol-3-yl)indolin-2-ones and 2,2-bis(indol-3-yl)acenaphthylen-1(2H)-one derivatives via an eco-friendly pseudo-multicomponent reaction at room temperature using sulfamic acid as an organo-catalyst. ACS Sustainable Chem. Eng., 2 (12) 411-422. (c) Brahmachari G., Laskar S., and Banerjee B. (2014) Eco-friendly, one-pot multicomponent synthesis of pyran annulated heterocyclic scaffolds at room temperature using ammonium or sodium formate as non-toxic catalyst. J. Het. Chem., 51 (S1) 303-308. (d) Waldmann H., Khedkar V., Dückert H., Schürmann M., Oppel I. M., and Kumar K. (2008) Asymmetric synthesis of natural product inspired tricyclic benzopyrones by an organocatalyzed annulation reaction. Angew. Chem. Int. Ed., 120 (36) 6975-6978. (e) Khodabakhshi S., and Karimi B. (2014) Graphene oxide nanosheets as metal-free catalysts in the three-component reactions based on aryl glyoxals to generate novel pyranocoumarins. New J Chem., 38 (8) 3586-3590. (f) Kangani M., Hazeri N., Mghsoodlou M. T., Habibi-khorasani S. M., and Salehi S. (2015) Green synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives using maltose as biodegradable catalyst. Res. Chem. Intermed., 41 (4) 2513-2519. (g) Sandaroos R., Damavandi S., and Salimi M. (2012) Facile one-pot synthesis of 5-amino-7-aryl-6-cyano-4H-pyrano[3,2-b]pyrroles using supported hydrogen sulfate ionic liquid. Monatsh. Chem., 143 (12) 1655-1661.
3 (a) Sabour B., Peyrovi M. H., and Hajimohammadi M. (2015) Al-HMS-20 catalyzed synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines via three-component reaction. Res. Chem. Intermed., 41 (3) 1343-1350. (b) Kamdar N. R., Haveliwala D. D., Mistry P. T., and Patel S. K. (2010) Design, synthesis and in vitro evaluation of antitubercular and antimicrobial activity of some novel pyranopyrimidines. Eur. J.Med. Chem., 45 (11) 5056-5063. (c) Bruno O., Brullo C., Ranise A., Schenone S., Bondavalli F., Barocelli E., Ballabeni V., Chiavarini M., Tognolini M., and Impicciatore M. (2001) Synthesis and pharmacological evaluation of 2,5-cycloamino-5H-[1]benzopyrano[4,3-d]pyrimidines endowed with in vitro antiplatelet activity. Bioorg. Med. Chem. Lett., 11 (11) 1397-1400. (d) Bhat A. R., Shala A. H., and Dongre R. S. (2015) Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylate as potent in vitro antibacterial and antifungal activity. J. Adv. Res., 6 (6) 941-948. (e) Abdo N. Y. M. (2015) Synthesis and antitumor evaluation of novel dihydropyrimidine, thiazolo[3,2-a]pyrimidine and pyrano[2,3-d]pyrimidine derivatives. Acta. Chim. Slov., 62 (1) 168-180. (f) Shamroukh A. H., Zaki M. E. A., Morsy E. M. H., Abdel-Motti F. M., and Abdel-Megeid F. M. E. (2007) Synthesis of pyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidine derivatives for antiviral evaluation. Arch. Pharm., 340 (5) 236-243. (g) Balalaie S., Abdolmohammadi S., Bijanzadeh H. R., and Amani A. M. (2008) Diammonium hydrogen phosphate as a versatile and efficient catalyst for the one-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives in aqueous media. Mol. Divers., 12 (2) 85-91.
4 (a) Wagner B., Hiller W., Ohno H., and Krause N. (2016) Gold-catalyzed three-component spirocyclization: a one-pot approach to functionalized pyrazolidines. Org. Biomol. Chem., 14 (5) 1579-1583. (b) Rotstein B. H., Zaretsky S., Vishal R., and Yudin A. K. (2014) Small heterocycles in multicomponent reactions. Chem. Rev., 114 (16) 8323-8359. (c) Shiri M. (2012) Indoles in multicomponent processes (MCPs). Chem. Rev., 112 (6) 3508-3549. (d) Dömling A. (2006) Recent development in isocyanide based multicomponent reaction in applied chemistry. Chem. Rev., 106 (1) 17-89. (e) Dömling A., Wang W., and Wang K. (2012) Chemistry and biology of multicomponent reactions. Chem. Rev., 112 (6) 3083-3135. (f) Ramon J. D., and Yus M. (2005) Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed., 44 (11) 1602-1634. (g) Posner H. G. (1986) Multicomponent one-pot annulations forming 3 to 6 bonds. Chem. Rev., 86 (5) 831-844. (h) Singh M. S., and Chowdhury S. (2012) Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Adv., 2 (11) 4547-4592. (i) Elders N., Van Der Born D., Hendrickx L. J. D., Timmer B. J. J., Krause A., Janssen E., De Kanter F. J. J., Ruijter E., and Orru R. V. A. (2009) The efficient one-pot reaction of up to eight components by the union of multicomponent reactions. Angew. Chem. Int. Ed., 48 (32) 5856-5859. (j) Gu Y. (2012) Multicomponent reactions in unconventional solvents: state of the art. Green Chem., 14 (8) 2091-2128. (h) Bhattacharjee S., and Khan A. T. (2016) One-pot three component synthesis of 3,5-disubstituted 2,6-dicyanoaniline derivatives using 4-dimethylaminopyridine (DMAP) as a catalyst. Tetrahedron Lett., 57 (27-28) 2994-2997. (i) Duan T., Zhai T., Liu H., Yan Z., Zhao Y., Feng L., and Ma C. (2016) One-pot three-component synthesis of quinazolines via a copper-catalysed oxidative amination reaction. Org. Biomol. Chem., 14 (27) 6561-6567.
5 (a) Daştan A., Kulkarni A., and Török B. (2012) Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches. Green Chem., 14 (1) 17-37. (b) Sheldon R. A., (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev., 41 (4) 1437-1451. (c) Sankar M., Dimitratos N., Miedziak P. J., Wells P. P., Keily C. J., and Hutchings G. J. (2012) Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev., 41 (24) 8099- 8139. (d) Beach E. S., Cui Z., and Anastas P. T. (2009) Green Chemistry: a design framework for sustainability. Energy Environ. Sci., 2 (10) 1038-1049. (e) Sahu P. K., Sahu P. K., Gupta S. K., and Agarwal D. D. (2014) Chitosan: an efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Ind. Eng. Chem. Res., 53 (6) 2085-2091. (f) Dekamin M. G., and Eslami M. (2014) Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino- 3-cyano-4H-pyrans under mechanochemical ball milling. Green Chem., 16 (12) 4914-4921.
6 (a) Dekamin G. M., Azimoshan M., and Ramezani L. (2013) Chitosan: a highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chem., 15 (3) 811-820. (b) Rostamnia S., Lamei K., Mohammadquli M., Sheykhan M., and Heydari A. (2012) Nanomagnetically modified sulfuric acid (γ-Fe2O3@SiO2-OSO3H): an efficient, fast, and reusable green catalyst for the Ugi-like Groebke-Blackburn-Bienaymé three-component reaction under solvent-free conditions. Tetrahedron Lett., 53 (39) 5257-5260. (c) Razavi N., and Akhlaghinia B. (2016) Hydroxyapatite nanoparticles (HAP NPs): a green and efficient heterogeneous catalyst for three-component one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives in aqueous media. New J. Chem., 40 (1) 447-457.
7 (a) List B. (2007) Introduction: organocatalysis. Chem. Rev., 107 (12) 5413-5415. (b) Nayak S., Chakroborty S., Bhakta S., Panda P., and Mohapatra S. (2016) Recent advances of organocatalytic enantioselective Michael-addition to chalcone. Res. Chem. Intermed., 42 (4) 2731-2747. (c) Vogit B., and Mahrwald R. (2014) Organocatalyzed cascade reactions ofcarbohydrates - a direct access to C-glycosides. Chem. Commun., 50 (7) 817-819. (d) Xuan Y-N., Chen Z-Y., and Yan M. (2014) An organocatalytic cascade reaction of 2-nitrocyclohexanone and α,β-unsaturated aldehydes with unusual regioselectivity. Chem. Commun., 50 (72) 10471-10473. (e) Yu X., and Wang W. (2008) Organocatalysis: asymmetric cascade reactions catalysed by chiral secondary amines. Org. Biomol. Chem., 6 (12) 2037-2046.
8 (a) Dalpozzo R., Bartoli G., and Bencivenni G. (2012) Recent advances in organocatalytic methods for the synthesis of disubstituted 2- and 3-indolinones. Chem. Soc. Rev., 41 (21) 7247-7290. (b) Gajulaplli V. P. R., Lokesh K., Vishwanath M., and Kesavan V. (2016) Organocatalytic construction of spirooxindole naphthoquinones through Michael/hemiketalization using L-proline derived bifunctional thiourea. RSC Adv., 6 (15) 12180-12184. (c) Hahn R., Raabe G., and Enders D. (2014) Asymmetric synthesis of highly functionalized tetrahydropyrans via a one-pot organocatalytic Michael/Henry/ketalization sequence., Org. Lett., 16 (14) 3636-3639.
9 Maher D., and Connon S. J. (2004) Acceleration of the DABCO-promoted Baylis-Hillman reaction using a recoverable H-bonding organocatalyst. Tetrahedron Lett., 45 (6) 1301-1305.
10 Bu X., Jing H., Wang L., Chang T., Jin L., and Liang Y. (2006) Organic base catalyzed O-alkylation of phenols under solvent-free condition. J. Mol. Catal. A: Chem., 259 (1-2) 121-124.
11 Mario W., Richard H., and Norbert M. (2011) Ammonium ylides for the diastereoselective synthesis of glycidic amides. Chem. Commun., 47 (7) 2170-2172.
12 Li J. H., Hu X. C., Liang Y., and Xie Y. X. (2006) PEG-400 promoted Pd(OAc)2/DABCO-catalyzed cross-coupling reactions in aqueous media. Tetrahedron Lett., 62 (1) 31-38.
13 (a) Zhong Y., Ma S., Li B., Jiang X., and Wang R. (2015) Diastereoselective synthesis of biheterocyclic tetrahydrothiophene derivatives via base-catalyzed cascade Michael-aldol [3+2] annulation of 1,4-dithiane-2,5-diol with maleimides. J. Org. Chem., 80 (13) 6870-6874. (b) Keyame A., Esmayil Z., Wang L., and Jun F. (2014) Convenient DABCO-catalyzed one-pot synthesis of multi-substituted pyrano[2,3-c]pyrazole dicarboxylates. Tetrahedron, 70 (26) 3976-3980. (c) Cao H., Zhong H., Lin Y., and Yang L. (2012) DABCO-catalyzed C-C bond formation reaction between electron-deficient alkynes and 1,3-dicarbonyl compounds. Tetrahedron, 68 (21) 4042-4047. (d) Wu J., Shang Y., wang C., He X., Yan Z., Hu M., and Zhou F. (2013) Synthesis of 3,4-dihydro-2H-1,4-benzo[b]thiazine derivatives via DABCO-catalyzed one-pot three-component condensation reactions. RSC Adv., 3 (14) 4643-4651. (e) Abaee M. S., and Gheraghi S. (2014) Aqueous DABCO, an efficient medium for rapid organocatalyzed Knoevenagel condensation and the Gewald reaction. Turk. J. Chem., 38 650-660. (f) Bangade V. M., Raddy B. C., Thakur P. B., Babu B. M., and Meshram H. M. (2013) DABCO catalyzed highly regioselective synthesis of fused imidazo-heterocycles in aqueous medium. Tetrahedron Lett., 54 (35) 4767-4771. (g) Meninno S., Capobianco A., Peluso A., and Lattanzi A. (2015) One-pot highly diastereoselective annulation to N-unprotected tetrasubstituted 2-pyrrolines. Green Chem., 17 (4) 2137-2140. (h) Chang Q., Wang C., Wang D., Wang H., Wu F., Xin X., and wan B., (2015) DABCO-catalyzed synthesis of 3-bromo-/3-iodo-2H-pyrans from propargyl alcohols, dialkyl acetylene dicarboxylates, and N-bromo-/N-iodosuccinimides. Tetrahedron Lett., 56 (2) 401-403. (i) Mao H., Lin A., Tang Z., Hu H., Zhu C., and Chen Y. (2014) Organocatalytic one-pot synthesis of highly substituted pyridazines from Morita-Baylis-Hillman carbonates and diazo compounds. Chem. Eur. J., 20 (9) 2454-2458. (j) Abdolmohsen S. A., and El-ossaily A-B. (2015) One-pot synthesis of 5-[1-substituted 4-acetyl-5-methyl-1H-pyrrol-2-yl)]-8-hydroxyquinolines using DABCO as green catalyst. Heterocycl. Commun., 21 (4) 207-210.
14 (a) Rimaz M., and Mousavi H. (2013) A one-pot strategy for regioselective synthesis of 6-aryl-3-oxo-2,3-dihydropyridazine-4-carbohydrazides. Turk. J. Chem., 37 252-261. (b) Rimaz M., Pourhossein P., and Khalili B. (2015) Regiospecific one-pot, combinatorial synthesis of new substituted pyrimido[4,5-c]pyridazines as potential monoamine oxidase inhibitors. Turk. J. Chem., 39 244-254. (c) Rimaz M. (2015) Two efficient one-pot approaches for regioselective synthesis of new 3-arylpyridazino[4,3-c]quinolin-5(6H)-ones. Aust. J. Chem., 68 (10) 1529-1534. (d) Rimaz M., Mousavi H., Keshavarz P., and Khalili B. (2015) ZrOCl2.8H2O as a green and efficient catalyst for the expeditious synthesis of substituted 3-arylpyrimido[4,5-c]pyridazines in water. Curr. Chem. Lett., 4 (4) 159-168. (e) Rimaz M., Jalalian Z., Mousavi H., and Prager R. H. (2016) Base organocatalyst mediated annulation of arylglyoxalmonohydrates with 2,4-dihydroxyquinoline to form new pyranodiquinolinones. Tetrahedron Lett., 57 (1) 105-109. (f) Rimaz M., and Aali F. (2016) An environmentally-friendly base organocatalyzed one-pot strategy for the regioselective synthesis of novel 3,6-diaryl-4-methylpyridazines. Chin. J. catal., 37 (4) 517-525. (g) Rimaz M., Khalafy J., Mousavi H. (2016) A green organocatalyzed one-pot protocol for efficient synthesis of new substituted pyrimido[4,5-d]pyrimidinones using a Biginelli-like reaction. Res. Chem. Intermed., 42 (12) 8185-8200.
15 (a) Rimaz M., Rabiei H., Khalili B., and Prager R. H. (2014) An efficient one-pot two-component protocol for regio- and chemoselective synthesis of 5-aryloyl-1,3,7,9-tetraalkyl-2,8-dithioxo-2,3,8,9-tetrahydro-1H-pyrano[2,3-d:6,5-dˊ]dipyrimidine-4,6(5H,7H)-diones. Aust. J. Chem., 67 (2) 283-288. (b) Rimaz M., Mirshokraie A., Khalili B., and Motiee P. (2015) Efficient access to novel 5-aryloyl-1H-pyrano[2,3-d:6,5-d']-dipyrimidine-2,4,6,8(3H,5H,7H,9H)-tetraones and their sulfur analogs in water. Arkivoc, v 88-98. (c) Rimaz M., Mousavi H., Behnam M., Khalili B. (2016) A green chemoselective one-pot protocol for expeditious synthesis of symmetric pyranodipyrimidine derivatives using ZrOCl2.8H2O. Curr. Chem. Lett., 5 (4) 145-154.
2 (a) Fan X., Feng D., Qu Y., Zhang X., Wang J., Loiseau p. M., Andrei G., Snoeck R. and De Clercqe. (2011) Practical and efficient synthesis of pyrano[3,2-c]pyridone, pyrano[4,3-b]pyran and their hybrids with nucleoside as potential antiviral and antileishmanial agents. Bioorg. Med. Chem. Lett., 20 (3) 809-813. (b) Brahmachari G., and Banerjee B. (2014) Facile and one-Pot access of 3,3-bis(indol-3-yl)indolin-2-ones and 2,2-bis(indol-3-yl)acenaphthylen-1(2H)-one derivatives via an eco-friendly pseudo-multicomponent reaction at room temperature using sulfamic acid as an organo-catalyst. ACS Sustainable Chem. Eng., 2 (12) 411-422. (c) Brahmachari G., Laskar S., and Banerjee B. (2014) Eco-friendly, one-pot multicomponent synthesis of pyran annulated heterocyclic scaffolds at room temperature using ammonium or sodium formate as non-toxic catalyst. J. Het. Chem., 51 (S1) 303-308. (d) Waldmann H., Khedkar V., Dückert H., Schürmann M., Oppel I. M., and Kumar K. (2008) Asymmetric synthesis of natural product inspired tricyclic benzopyrones by an organocatalyzed annulation reaction. Angew. Chem. Int. Ed., 120 (36) 6975-6978. (e) Khodabakhshi S., and Karimi B. (2014) Graphene oxide nanosheets as metal-free catalysts in the three-component reactions based on aryl glyoxals to generate novel pyranocoumarins. New J Chem., 38 (8) 3586-3590. (f) Kangani M., Hazeri N., Mghsoodlou M. T., Habibi-khorasani S. M., and Salehi S. (2015) Green synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives using maltose as biodegradable catalyst. Res. Chem. Intermed., 41 (4) 2513-2519. (g) Sandaroos R., Damavandi S., and Salimi M. (2012) Facile one-pot synthesis of 5-amino-7-aryl-6-cyano-4H-pyrano[3,2-b]pyrroles using supported hydrogen sulfate ionic liquid. Monatsh. Chem., 143 (12) 1655-1661.
3 (a) Sabour B., Peyrovi M. H., and Hajimohammadi M. (2015) Al-HMS-20 catalyzed synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines via three-component reaction. Res. Chem. Intermed., 41 (3) 1343-1350. (b) Kamdar N. R., Haveliwala D. D., Mistry P. T., and Patel S. K. (2010) Design, synthesis and in vitro evaluation of antitubercular and antimicrobial activity of some novel pyranopyrimidines. Eur. J.Med. Chem., 45 (11) 5056-5063. (c) Bruno O., Brullo C., Ranise A., Schenone S., Bondavalli F., Barocelli E., Ballabeni V., Chiavarini M., Tognolini M., and Impicciatore M. (2001) Synthesis and pharmacological evaluation of 2,5-cycloamino-5H-[1]benzopyrano[4,3-d]pyrimidines endowed with in vitro antiplatelet activity. Bioorg. Med. Chem. Lett., 11 (11) 1397-1400. (d) Bhat A. R., Shala A. H., and Dongre R. S. (2015) Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylate as potent in vitro antibacterial and antifungal activity. J. Adv. Res., 6 (6) 941-948. (e) Abdo N. Y. M. (2015) Synthesis and antitumor evaluation of novel dihydropyrimidine, thiazolo[3,2-a]pyrimidine and pyrano[2,3-d]pyrimidine derivatives. Acta. Chim. Slov., 62 (1) 168-180. (f) Shamroukh A. H., Zaki M. E. A., Morsy E. M. H., Abdel-Motti F. M., and Abdel-Megeid F. M. E. (2007) Synthesis of pyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidine derivatives for antiviral evaluation. Arch. Pharm., 340 (5) 236-243. (g) Balalaie S., Abdolmohammadi S., Bijanzadeh H. R., and Amani A. M. (2008) Diammonium hydrogen phosphate as a versatile and efficient catalyst for the one-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives in aqueous media. Mol. Divers., 12 (2) 85-91.
4 (a) Wagner B., Hiller W., Ohno H., and Krause N. (2016) Gold-catalyzed three-component spirocyclization: a one-pot approach to functionalized pyrazolidines. Org. Biomol. Chem., 14 (5) 1579-1583. (b) Rotstein B. H., Zaretsky S., Vishal R., and Yudin A. K. (2014) Small heterocycles in multicomponent reactions. Chem. Rev., 114 (16) 8323-8359. (c) Shiri M. (2012) Indoles in multicomponent processes (MCPs). Chem. Rev., 112 (6) 3508-3549. (d) Dömling A. (2006) Recent development in isocyanide based multicomponent reaction in applied chemistry. Chem. Rev., 106 (1) 17-89. (e) Dömling A., Wang W., and Wang K. (2012) Chemistry and biology of multicomponent reactions. Chem. Rev., 112 (6) 3083-3135. (f) Ramon J. D., and Yus M. (2005) Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed., 44 (11) 1602-1634. (g) Posner H. G. (1986) Multicomponent one-pot annulations forming 3 to 6 bonds. Chem. Rev., 86 (5) 831-844. (h) Singh M. S., and Chowdhury S. (2012) Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Adv., 2 (11) 4547-4592. (i) Elders N., Van Der Born D., Hendrickx L. J. D., Timmer B. J. J., Krause A., Janssen E., De Kanter F. J. J., Ruijter E., and Orru R. V. A. (2009) The efficient one-pot reaction of up to eight components by the union of multicomponent reactions. Angew. Chem. Int. Ed., 48 (32) 5856-5859. (j) Gu Y. (2012) Multicomponent reactions in unconventional solvents: state of the art. Green Chem., 14 (8) 2091-2128. (h) Bhattacharjee S., and Khan A. T. (2016) One-pot three component synthesis of 3,5-disubstituted 2,6-dicyanoaniline derivatives using 4-dimethylaminopyridine (DMAP) as a catalyst. Tetrahedron Lett., 57 (27-28) 2994-2997. (i) Duan T., Zhai T., Liu H., Yan Z., Zhao Y., Feng L., and Ma C. (2016) One-pot three-component synthesis of quinazolines via a copper-catalysed oxidative amination reaction. Org. Biomol. Chem., 14 (27) 6561-6567.
5 (a) Daştan A., Kulkarni A., and Török B. (2012) Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches. Green Chem., 14 (1) 17-37. (b) Sheldon R. A., (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev., 41 (4) 1437-1451. (c) Sankar M., Dimitratos N., Miedziak P. J., Wells P. P., Keily C. J., and Hutchings G. J. (2012) Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev., 41 (24) 8099- 8139. (d) Beach E. S., Cui Z., and Anastas P. T. (2009) Green Chemistry: a design framework for sustainability. Energy Environ. Sci., 2 (10) 1038-1049. (e) Sahu P. K., Sahu P. K., Gupta S. K., and Agarwal D. D. (2014) Chitosan: an efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Ind. Eng. Chem. Res., 53 (6) 2085-2091. (f) Dekamin M. G., and Eslami M. (2014) Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino- 3-cyano-4H-pyrans under mechanochemical ball milling. Green Chem., 16 (12) 4914-4921.
6 (a) Dekamin G. M., Azimoshan M., and Ramezani L. (2013) Chitosan: a highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chem., 15 (3) 811-820. (b) Rostamnia S., Lamei K., Mohammadquli M., Sheykhan M., and Heydari A. (2012) Nanomagnetically modified sulfuric acid (γ-Fe2O3@SiO2-OSO3H): an efficient, fast, and reusable green catalyst for the Ugi-like Groebke-Blackburn-Bienaymé three-component reaction under solvent-free conditions. Tetrahedron Lett., 53 (39) 5257-5260. (c) Razavi N., and Akhlaghinia B. (2016) Hydroxyapatite nanoparticles (HAP NPs): a green and efficient heterogeneous catalyst for three-component one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives in aqueous media. New J. Chem., 40 (1) 447-457.
7 (a) List B. (2007) Introduction: organocatalysis. Chem. Rev., 107 (12) 5413-5415. (b) Nayak S., Chakroborty S., Bhakta S., Panda P., and Mohapatra S. (2016) Recent advances of organocatalytic enantioselective Michael-addition to chalcone. Res. Chem. Intermed., 42 (4) 2731-2747. (c) Vogit B., and Mahrwald R. (2014) Organocatalyzed cascade reactions ofcarbohydrates - a direct access to C-glycosides. Chem. Commun., 50 (7) 817-819. (d) Xuan Y-N., Chen Z-Y., and Yan M. (2014) An organocatalytic cascade reaction of 2-nitrocyclohexanone and α,β-unsaturated aldehydes with unusual regioselectivity. Chem. Commun., 50 (72) 10471-10473. (e) Yu X., and Wang W. (2008) Organocatalysis: asymmetric cascade reactions catalysed by chiral secondary amines. Org. Biomol. Chem., 6 (12) 2037-2046.
8 (a) Dalpozzo R., Bartoli G., and Bencivenni G. (2012) Recent advances in organocatalytic methods for the synthesis of disubstituted 2- and 3-indolinones. Chem. Soc. Rev., 41 (21) 7247-7290. (b) Gajulaplli V. P. R., Lokesh K., Vishwanath M., and Kesavan V. (2016) Organocatalytic construction of spirooxindole naphthoquinones through Michael/hemiketalization using L-proline derived bifunctional thiourea. RSC Adv., 6 (15) 12180-12184. (c) Hahn R., Raabe G., and Enders D. (2014) Asymmetric synthesis of highly functionalized tetrahydropyrans via a one-pot organocatalytic Michael/Henry/ketalization sequence., Org. Lett., 16 (14) 3636-3639.
9 Maher D., and Connon S. J. (2004) Acceleration of the DABCO-promoted Baylis-Hillman reaction using a recoverable H-bonding organocatalyst. Tetrahedron Lett., 45 (6) 1301-1305.
10 Bu X., Jing H., Wang L., Chang T., Jin L., and Liang Y. (2006) Organic base catalyzed O-alkylation of phenols under solvent-free condition. J. Mol. Catal. A: Chem., 259 (1-2) 121-124.
11 Mario W., Richard H., and Norbert M. (2011) Ammonium ylides for the diastereoselective synthesis of glycidic amides. Chem. Commun., 47 (7) 2170-2172.
12 Li J. H., Hu X. C., Liang Y., and Xie Y. X. (2006) PEG-400 promoted Pd(OAc)2/DABCO-catalyzed cross-coupling reactions in aqueous media. Tetrahedron Lett., 62 (1) 31-38.
13 (a) Zhong Y., Ma S., Li B., Jiang X., and Wang R. (2015) Diastereoselective synthesis of biheterocyclic tetrahydrothiophene derivatives via base-catalyzed cascade Michael-aldol [3+2] annulation of 1,4-dithiane-2,5-diol with maleimides. J. Org. Chem., 80 (13) 6870-6874. (b) Keyame A., Esmayil Z., Wang L., and Jun F. (2014) Convenient DABCO-catalyzed one-pot synthesis of multi-substituted pyrano[2,3-c]pyrazole dicarboxylates. Tetrahedron, 70 (26) 3976-3980. (c) Cao H., Zhong H., Lin Y., and Yang L. (2012) DABCO-catalyzed C-C bond formation reaction between electron-deficient alkynes and 1,3-dicarbonyl compounds. Tetrahedron, 68 (21) 4042-4047. (d) Wu J., Shang Y., wang C., He X., Yan Z., Hu M., and Zhou F. (2013) Synthesis of 3,4-dihydro-2H-1,4-benzo[b]thiazine derivatives via DABCO-catalyzed one-pot three-component condensation reactions. RSC Adv., 3 (14) 4643-4651. (e) Abaee M. S., and Gheraghi S. (2014) Aqueous DABCO, an efficient medium for rapid organocatalyzed Knoevenagel condensation and the Gewald reaction. Turk. J. Chem., 38 650-660. (f) Bangade V. M., Raddy B. C., Thakur P. B., Babu B. M., and Meshram H. M. (2013) DABCO catalyzed highly regioselective synthesis of fused imidazo-heterocycles in aqueous medium. Tetrahedron Lett., 54 (35) 4767-4771. (g) Meninno S., Capobianco A., Peluso A., and Lattanzi A. (2015) One-pot highly diastereoselective annulation to N-unprotected tetrasubstituted 2-pyrrolines. Green Chem., 17 (4) 2137-2140. (h) Chang Q., Wang C., Wang D., Wang H., Wu F., Xin X., and wan B., (2015) DABCO-catalyzed synthesis of 3-bromo-/3-iodo-2H-pyrans from propargyl alcohols, dialkyl acetylene dicarboxylates, and N-bromo-/N-iodosuccinimides. Tetrahedron Lett., 56 (2) 401-403. (i) Mao H., Lin A., Tang Z., Hu H., Zhu C., and Chen Y. (2014) Organocatalytic one-pot synthesis of highly substituted pyridazines from Morita-Baylis-Hillman carbonates and diazo compounds. Chem. Eur. J., 20 (9) 2454-2458. (j) Abdolmohsen S. A., and El-ossaily A-B. (2015) One-pot synthesis of 5-[1-substituted 4-acetyl-5-methyl-1H-pyrrol-2-yl)]-8-hydroxyquinolines using DABCO as green catalyst. Heterocycl. Commun., 21 (4) 207-210.
14 (a) Rimaz M., and Mousavi H. (2013) A one-pot strategy for regioselective synthesis of 6-aryl-3-oxo-2,3-dihydropyridazine-4-carbohydrazides. Turk. J. Chem., 37 252-261. (b) Rimaz M., Pourhossein P., and Khalili B. (2015) Regiospecific one-pot, combinatorial synthesis of new substituted pyrimido[4,5-c]pyridazines as potential monoamine oxidase inhibitors. Turk. J. Chem., 39 244-254. (c) Rimaz M. (2015) Two efficient one-pot approaches for regioselective synthesis of new 3-arylpyridazino[4,3-c]quinolin-5(6H)-ones. Aust. J. Chem., 68 (10) 1529-1534. (d) Rimaz M., Mousavi H., Keshavarz P., and Khalili B. (2015) ZrOCl2.8H2O as a green and efficient catalyst for the expeditious synthesis of substituted 3-arylpyrimido[4,5-c]pyridazines in water. Curr. Chem. Lett., 4 (4) 159-168. (e) Rimaz M., Jalalian Z., Mousavi H., and Prager R. H. (2016) Base organocatalyst mediated annulation of arylglyoxalmonohydrates with 2,4-dihydroxyquinoline to form new pyranodiquinolinones. Tetrahedron Lett., 57 (1) 105-109. (f) Rimaz M., and Aali F. (2016) An environmentally-friendly base organocatalyzed one-pot strategy for the regioselective synthesis of novel 3,6-diaryl-4-methylpyridazines. Chin. J. catal., 37 (4) 517-525. (g) Rimaz M., Khalafy J., Mousavi H. (2016) A green organocatalyzed one-pot protocol for efficient synthesis of new substituted pyrimido[4,5-d]pyrimidinones using a Biginelli-like reaction. Res. Chem. Intermed., 42 (12) 8185-8200.
15 (a) Rimaz M., Rabiei H., Khalili B., and Prager R. H. (2014) An efficient one-pot two-component protocol for regio- and chemoselective synthesis of 5-aryloyl-1,3,7,9-tetraalkyl-2,8-dithioxo-2,3,8,9-tetrahydro-1H-pyrano[2,3-d:6,5-dˊ]dipyrimidine-4,6(5H,7H)-diones. Aust. J. Chem., 67 (2) 283-288. (b) Rimaz M., Mirshokraie A., Khalili B., and Motiee P. (2015) Efficient access to novel 5-aryloyl-1H-pyrano[2,3-d:6,5-d']-dipyrimidine-2,4,6,8(3H,5H,7H,9H)-tetraones and their sulfur analogs in water. Arkivoc, v 88-98. (c) Rimaz M., Mousavi H., Behnam M., Khalili B. (2016) A green chemoselective one-pot protocol for expeditious synthesis of symmetric pyranodipyrimidine derivatives using ZrOCl2.8H2O. Curr. Chem. Lett., 5 (4) 145-154.