How to cite this paper
Rimaz, M., Mousavi, H., Behnam, M & Khalil, B. (2016). A green chemoselective one-pot protocol for expeditious synthesis of symmetric pyranodipyrimidine derivatives using ZrOCl2.8H2O.Current Chemistry Letters, 5(4), 145-154.
Refrences
1 Sheldon R. A., (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev., 411437-1451.
2 Beach E. S., Cui Z., and Anastas P. T. (2009) Green Chemistry: A design framework for sustainability. Energy Environ. Sci., 2 (10) 1038-1049.
3 Sankar M., Dimitratos N., Miedziak P. J., Wells P. P., Keily C. J., and Hutchings G. J. (2012) Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev., 41 (24) 8099- 8139.
4 Sahu P. K., Sahu P. K., Gupta S. K., and Agarwal D. D. (2014) Chitosan: An efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Ind. Eng. Chem. Res., 53 (6) 2085-2091.
5 Dekamin M. G., and Eslami M. (2014) Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino- 3-cyano-4H-pyrans under mechanochemical ball milling. Green Chem., 16 (12) 4914-4921.
6 Dekamin G. M., Azimoshan M., and Ramezani L. (2013) Chitosan: a highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chem., 15 (3) 811-820.
7 Rotstein B. H., Zaretsky S., Vishal R., and Yudin A. K. (2014) Small heterocycles in multicomponent reactions. Chem. Rev., 114 (16) 8323-8359.
8 Shiri M. (2012) Indoles in multicomponent processes (MCPs). Chem. Rev., 112 (6) 3508-3549.
9 Dömling A. (2006) Recent development in isocyanide based multicomponent reaction in applied chemistry. Chem. Rev., 106 (1) 17-89.
10 Dömling A., Wang W., and Wang K. (2012) Chemistry and biology of multicomponent reactions. Chem. Rev., 112 (6) 3083-3135.
11 Ramon J. D., and Yus M. (2005) Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed., 44 (11) 1602-1634.
12 Posner H. G. (1986) Multicomponent one-pot annulations forming 3 to 6 bonds. Chem. Rev., 86 (5) 831-844.
13 Singh M. S., and Chowdhury S. (2012) Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC. Adv., 24547-4592.
14 Elders N., Van Der Born D., Hendrickx L. J. D., Timmer B. J. J., Krause A., Janssen E., De Kanter F. J. J., Ruijter E., andOrru R. V. A. (2009) The efficient one-pot reaction of up to eight components by the union of multicomponent reactions. Angew. Chem. Int. Ed., 48 (32) 5856-5859.
15 Gu Y. (2012) Multicomponent reactions in unconventional solvents: state of the art. Green Chem., 14 (8) 2091-2128.
16 Karimi B., Mobaraki A., Mirzaei H. M., Zarayee D., and Vali H. (2014) Improving the selectivity toward three-component Biginelli versus Hantzsch reactions by controlling the catalyst hydrophobic/hydrophilic surface balance. Chem. Cat. Chem., 6 (1) 212-219.
17 Karimi B., and Maleki J. (2002) Lithium triflate (LiOTf) catalyzed efficient and chemoselectivetetrahydropyranylation of alcohols and phenols under mild and neutral reaction conditions. Tetrahedron Lett., 43 (30) 5353-5355.
18 Firouzabadi H.,Sardarian A. R., Khayat Z., Karimi B.,and Tangestaninejad S. (1997) Nitrogen ligand complexes of metal chlorides as effective catalysts for the highly regio- and chemoselectivesilylation of hydroxyl groups with hexamethyldisilazane (HMDS) at room temperature. Synth.Commun., 27 (15) 2709-2719.
19 Karimi B., and Zareyee D. (2005) A high loading sulfonic acid-functionalized ordered nanoporous silica as an efficient and recyclable catalyst for chemoselectivedeprotection of tert-butyldimethylsilyl ethers. TetrahedronLett., 46 (27) 4661-4665.
20 Karimi B., Maleki A., Elhamifar D., Clark J. H., and Hunt A. J. (2010) Self-assembled organic- inorganic hybrid silica with ionic liquid framework: a novel support for the catalytic enantioselective Strecker reaction of imines using Yb(OTf)3-pybox catalyst. Chem. Commun., 46 (37) 6947-6949.
21 Rajabi F., Luque R., Clark J. H., Karimi B., and Macquarrie D. J. (2011) A silica supported cobalt (II) Salen complex as efficient and reusable catalyst for the selective aerobic oxidation of ethyl benzene derivatives. Catal. Commun., 12 (6) 510-513.
22 Scholz J., Scholz K., and Mcquillan J. (2010) dehydration of ZrOCl2.8H2O. J. Phys. Chem. A., 114 (29) 7733-7741.
23 Firouzabadi H., and Jafarpour M. (2008) Some applications of zirconium (IV) tetrachloride (ZrCl4) and zirconium (IV) oxydichloride octahydrate (ZrOCl2.8H2O) as catalysts or reagents in organic synthesis. J. Iran. Chem. Soc., 5 (2) 159-183.
24 Akbari A., Amirabedi M., and Eftekhari-Sis B. (2012) A simplified green chemistry approach to the synthesis of carbon-carbon double bonds via knoevenagel condensation catalyzed with ZrOCl2.8H2O. J. Chem. Chem. Eng., 6 658-660.
25 Firouzabadi H., Iranpoor N., Jafarppour M., and Ghaderi A. (2006) ZrOCl2.8H2O as a highly efficient and the moisture tolerant Lewis acid catalyst for Michael addition of amines and indoles to α,β-unsaturated ketones under solvent-free conditions. J. Mol. Catal. A: Chem., 252 (1-2) 150-155.
26 Shirini F., Aolfigol M. A., and Mollarazi E. (2005) KBrO3/ ZrOCl2.8H2O: An efficient reagent system for the oxidation of alcohols. Synth. Commun., 35 (11)1541-1545.
27 Ghosh R., Maiti S., and Chakraborty A. (2005) Facile catalyzed acylation of alcohols, phenols, amines and thiols based on ZrOCl2.8H2O and acetyl chloride in solution and in solvent-free conditions. Tettrahedron Lett., 46 (1) 147-151.
28 Tayebee R., Rezaei Seresht E., Jafari F., and Rabiei S. (2013) Simple methodology for the aerobic N-Methylation of substituted anilines catalyzed by zirconium oxychloride octahydrate, ZrOCl2.8H2O. Ind. Eng. Chem. Res., 52 (32) 11001-11006.
29 Mantri K., Komura K., and Sugi Y. (2005) ZrOCl2.8H2O catalysts for the esterification of long chain aliphatic carboxylic acids and alcohols. The enhancement of catalytic performance by supporting on ordered mesoporous silica. Green Chem., 7 (9) 677-682.
30 Rahmatpour A. (2011) ZrOCl2.8H2O as a highly efficient, eco-friendly and recyclable Lewis acid catalyst for one-pot synthesis of N-substituted pyrroles under solvent-free conditions at room temperature. Appl. Organometal. Chem., 25 (8) 588-590.
31 Rezanejade Bardajee G., Jafarpour F., and Samareh Afsari H. (2010) ZrOCl2.8H2O: An efficient catalyst for rapid one-pot synthesis of 3-carboxycoumarins under ultrasound irradiation in water. Cent. Eur. J. Chem., 8 (2) 370-374.
32 Karimi S.,Karimi B., and Khodabakhshi S. (2013) Solvent-free synthesis of novel and known octahydroquinazolinones/thiones by the use of ZrOCl2.8H2O as a highly efficient and reusable catalyst. J. Chin. Chem. Soc., 60 (1) 22-60.
33 Sarita M., and Ghosh R. (2011) Efficient one-pot synthesis of functionalized piperidine scaffolds via ZrOCl2.8H2O catalyzed tandem reactions of aromatic aldehydes with amines and acetoacetic esters. Tettrahedron Lett., 52 (22) 2857-2861.
34 Tavakoli H. R.,Moosavi S. M., and Bazgir A. (2013) ZrOCl2.8H2O as an efficient catalyst for the pseudo four-component synthesis of benzopyranopyrimidines. J. Korean. Chem. Soc., 57 (2) 260-263.
35 Kappe C. O. (2000) Biologically active dihydropyrimidones of the Biginelli-type—a literature survey. Eur. J. Med. Chem., 35 (12) 1043-1052.
36 Zohdi H. F.,Rateb N. M., and Elnagdy S. M. (2011) Green synthesis and antimicrobial evaluation of some new trifluoromethyl-substituted hexahydropyrimidines by grinding. Eur. J. Med. Chem., 46 (11) 5636-5640.
37 Kamal A., Malik M. S., Bajee S., Azeeza S.,Fazel S., Ramakrishna S., Naidu V. G. M., and Vishnuwarhan M. V. P. S. (2011) Synthesis and biological evaluation of conformationally flexible as well as restricted dimers of monastrol and related dihydropyrimidones. Eur. J. Med. Chem., 46 (8) 3274-3281.
38 Singh K., Singh K., Wan B., Franzblau S., Chibale K., and Balzarini J. (2011) Facile transformation of Biginelli pyrimidin-2(1H)-ones to pyrimidines. In vitro evaluation as inhibitors of mycobacterium tuberculosis and modulators of cytostatic activity. Eur. J. Med. Chem., 46 (6) 2290-2294.
39 Singh K., Singh K., Trappanese D. M., and Moreland R. S. (2012) Highly regioselective synthesis of N-3 organophosphorous derivatives of 3,4-dihydropyrimidin-2(1H)-ones and their calcium channel binding studies. Eur. J. Med. Chem., 54 397-402.
40 Basiri A., Murugaiyah V., Osman H., Kumar R. S., Kia Y., Awang K. B., and Ali M. A. (2013) An expedient, ionic liquid mediated multi-component synthesis of novel piperidone grafted cholinesterase enzymes inhibitors and their molecular modeling study. Eur. J. Med. Chem., 67 221-229.
41 Bruno-Blanch L., Galvez J., and Garcia-Domenac R. (2003) Topological virtual screening: A way to find new anticonvulsant drugs from chemical diversity. Bioorg. Med. Chem. Lett., 13 (16) 2749-2754.
42 Ouf N. H., Selim Y. A.,Sakran M. I., and El-din A. S. B. (2014) Synthesis of pyranochromene and pyranopyrimidine derivatives from substituted natural coumarin isolated from Ammi majus L. and their biological evaluation. Med. Chem. Res., 23 (3) 1180-1188.
43 Kamdar N. R., Haveliwala D. D., Mistry P. T., and Patel S. K. (2010) Design, synthesis and in vitro evaluation of antitubercular and antimicrobial activity of some novel pyranopyrimidines. Eur. J. Med. Chem., 45 (11) 5056-5063.
44 Ghorab M. M., and Hassan A. Y. (1998) Synthesis and antibacterial properties of new dithienyl containing pyran, pyrano[2,3-b]pyridine, pyrano[2,3-b]pyrimidine and pyridine derivatives. Phosphorus. Sulfur. Silicon., 141 (1) 251-261.
45 Bruno O., Brullo C., Ranise A., Schenone S., Bondavalli F., Barocelli E., Ballabeni V., Chiavarini M., Tognolini M., and Impicciatore M. (2001) Synthesis and pharmacological evaluation of 2,5-cycloamino-5H-[1]benzopyrano[4,3-d]pyrimidines endowed with in vitro antiplatelet activity. Bioorg. Med. Chem. Lett., 11 (11) 1397-1400.
46 Bhat A. R., Shala A. H., and Dongre R. S. (2015) Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylate as potent in vitro antibacterial and antifungal activity. J. Adv. Res., 6 (6) 941-948.
47 Abdo N. Y. M. (2015) Synthesis and antitumor evaluation of novel dihydropyrimidine, thiazolo[3,2-a]pyrimidine and pyrano[2,3-d]pyrimidine derivatives. Acta. Chim. Slov., 62 (1) 168-180.
48 Shamroukh A. H.,Zaki M. E. A., Morsy E. M. H., Abdel-Motti F. M., and Abdel-Megeid F. M. E. (2007) Synthesis of pyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidine derivatives for antiviral evaluation. Arch. Pharm., 340 (5) 236-243.
49 Xing S., Wang J. R. K., Cui H., Li W., and Yan H. (2015) Lewis acid promoted three-component reactions of aziridines, arenes and aldehydes: an efficient and diastereoselective synthesis of cis 1,4-disubstituted tetrahydroisoquinolines. Tetrahedron, 71 (36) 6290-6299.
50 Ma G., Fujita T., and Sibi M. P. (2015) Lewis acid mediated diastereoselective intermolecular radical addition/trapping with pyrazolidinoneacrylimides. Tetrahedron Lett., 56 (23) 3571-3574.
51 Mohantry S., Roy A. K., Reddy G. S., Kumar K. P. V., Rama Devi B., Bhargavi G., and Karmakar A. C. (2015) Knoevenagel condensation of aromatic bisulfite adducts with 2,4- thiazolidinedione in the presence of Lewis acid catalysts. TetrahedronLett., 56 (20) 2564-2567.
52 Irvani N., Keshavarz M., Shojaeian Kish H. A., and Parandvar R. (2015) Tin sulfide nanoparticles supported on activated carbon as an efficient and reusable Lewis acid catalyst for three component one-pot synthesis of 4H-pyrano[2,3-c]pyrazole derivatives. Chin. J. Catal., 36 (4) 626-633.
53 Murarka S., Zhang C., Konieczynska M. D., and Seidel D. (2009) Lewis acid catalyzed formation of tetrahydroquinolines via an intramolecular redox process. Org. Lett., 11 (1)129-132.
54 North M.,Usanov D. L., and Young C. (2008) Lewis acid catalyzed asymmetric cyanohydrin synthesis. Chem. Rev., 108 (12) 5146-5226.
55 Mahrwald R. (1999) Diastereoselection in lewis-acid-mediated aldol additions. Chem. Rev., 99 (5)1095-1120.
56 Rimaz M., and Mousavi H. (2013) A one-pot strategy for regioselective synthesis of 6-aryl-3-oxo-2,3- dihydropyridazine-4-carbohydrazides. Turk. J. Chem., 37 252-261.
57 Rimaz M., Rabiei H., Khalili B., and Prager R. H. (2014) An efficient one-pot two-component protocol for regio- and chemoselective synthesis of 5-aryloyl-1,3,7,9-tetraalkyl-2,8-dithioxo-2,3,8,9-tetrahydro-1H-pyrano[2,3-d:6,5-dˊ]dipyrimidine-4,6(5H,7H)-diones. Aust. J. Chem., 67 (2) 283-288.
58 Rimaz M., Pourhossein P., and Khalili B. (2015) Regiospecific one-pot, combinatorial synthesis of new substituted pyrimido[4,5-c]pyridazines as potential monoamine oxidase inhibitors. Turk. J.Chem., 39 244-254.
59 Rimaz M., Mirshokraie A., Khalili B., and Motiee P. (2015) Efficient access to novel 5-aryloyl-1H-pyrano[2,3-d:6,5-d']-dipyrimidine-2,4,6,8(3H,5H,7H,9H)-tetraones and their sulfur analogs in water. Arkivoc, v, 88-98.
60 Rimaz M. (2015) Two efficient one-pot approaches for regioselective synthesis of new 3- arylpyridazino[4,3-c]quinolin-5(6H)-ones. Aust. J. Chem., 68 (10) 1529-1534.
61 Rimaz M., Jalalian Z., Mousavi H., and Prager R. H. (2016) Base organocatalyst mediated annulation of arylglyoxalmonohydrates with 2,4-dihydroxyquinoline to form new pyranodiquinolinones. Tetrahedron Lett., 57 (1) 105-109.
62 Rimaz M., Khalafy J., Mousavi H. (2016) A green organocatalyzed one-pot protocol for efficient synthesis of new substituted pyrimido[4,5-d]pyrimidinones using a Biginelli-like reaction. Res. Chem. Int., Accepted Manuscript (DOI:10.1007/s11164-016-2588-6).
63 Rimaz M., Mousavi H., Keshavarz P., and Khalili B. (2015) ZrOCl2.8H2O as a green and efficient catalyst for the expeditious synthesis of substituted 3-arylpyrimido[4,5-c]pyridazines in water. Curr. Chem. Lett., 4 (4) 159-168.
2 Beach E. S., Cui Z., and Anastas P. T. (2009) Green Chemistry: A design framework for sustainability. Energy Environ. Sci., 2 (10) 1038-1049.
3 Sankar M., Dimitratos N., Miedziak P. J., Wells P. P., Keily C. J., and Hutchings G. J. (2012) Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev., 41 (24) 8099- 8139.
4 Sahu P. K., Sahu P. K., Gupta S. K., and Agarwal D. D. (2014) Chitosan: An efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Ind. Eng. Chem. Res., 53 (6) 2085-2091.
5 Dekamin M. G., and Eslami M. (2014) Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino- 3-cyano-4H-pyrans under mechanochemical ball milling. Green Chem., 16 (12) 4914-4921.
6 Dekamin G. M., Azimoshan M., and Ramezani L. (2013) Chitosan: a highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chem., 15 (3) 811-820.
7 Rotstein B. H., Zaretsky S., Vishal R., and Yudin A. K. (2014) Small heterocycles in multicomponent reactions. Chem. Rev., 114 (16) 8323-8359.
8 Shiri M. (2012) Indoles in multicomponent processes (MCPs). Chem. Rev., 112 (6) 3508-3549.
9 Dömling A. (2006) Recent development in isocyanide based multicomponent reaction in applied chemistry. Chem. Rev., 106 (1) 17-89.
10 Dömling A., Wang W., and Wang K. (2012) Chemistry and biology of multicomponent reactions. Chem. Rev., 112 (6) 3083-3135.
11 Ramon J. D., and Yus M. (2005) Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed., 44 (11) 1602-1634.
12 Posner H. G. (1986) Multicomponent one-pot annulations forming 3 to 6 bonds. Chem. Rev., 86 (5) 831-844.
13 Singh M. S., and Chowdhury S. (2012) Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC. Adv., 24547-4592.
14 Elders N., Van Der Born D., Hendrickx L. J. D., Timmer B. J. J., Krause A., Janssen E., De Kanter F. J. J., Ruijter E., andOrru R. V. A. (2009) The efficient one-pot reaction of up to eight components by the union of multicomponent reactions. Angew. Chem. Int. Ed., 48 (32) 5856-5859.
15 Gu Y. (2012) Multicomponent reactions in unconventional solvents: state of the art. Green Chem., 14 (8) 2091-2128.
16 Karimi B., Mobaraki A., Mirzaei H. M., Zarayee D., and Vali H. (2014) Improving the selectivity toward three-component Biginelli versus Hantzsch reactions by controlling the catalyst hydrophobic/hydrophilic surface balance. Chem. Cat. Chem., 6 (1) 212-219.
17 Karimi B., and Maleki J. (2002) Lithium triflate (LiOTf) catalyzed efficient and chemoselectivetetrahydropyranylation of alcohols and phenols under mild and neutral reaction conditions. Tetrahedron Lett., 43 (30) 5353-5355.
18 Firouzabadi H.,Sardarian A. R., Khayat Z., Karimi B.,and Tangestaninejad S. (1997) Nitrogen ligand complexes of metal chlorides as effective catalysts for the highly regio- and chemoselectivesilylation of hydroxyl groups with hexamethyldisilazane (HMDS) at room temperature. Synth.Commun., 27 (15) 2709-2719.
19 Karimi B., and Zareyee D. (2005) A high loading sulfonic acid-functionalized ordered nanoporous silica as an efficient and recyclable catalyst for chemoselectivedeprotection of tert-butyldimethylsilyl ethers. TetrahedronLett., 46 (27) 4661-4665.
20 Karimi B., Maleki A., Elhamifar D., Clark J. H., and Hunt A. J. (2010) Self-assembled organic- inorganic hybrid silica with ionic liquid framework: a novel support for the catalytic enantioselective Strecker reaction of imines using Yb(OTf)3-pybox catalyst. Chem. Commun., 46 (37) 6947-6949.
21 Rajabi F., Luque R., Clark J. H., Karimi B., and Macquarrie D. J. (2011) A silica supported cobalt (II) Salen complex as efficient and reusable catalyst for the selective aerobic oxidation of ethyl benzene derivatives. Catal. Commun., 12 (6) 510-513.
22 Scholz J., Scholz K., and Mcquillan J. (2010) dehydration of ZrOCl2.8H2O. J. Phys. Chem. A., 114 (29) 7733-7741.
23 Firouzabadi H., and Jafarpour M. (2008) Some applications of zirconium (IV) tetrachloride (ZrCl4) and zirconium (IV) oxydichloride octahydrate (ZrOCl2.8H2O) as catalysts or reagents in organic synthesis. J. Iran. Chem. Soc., 5 (2) 159-183.
24 Akbari A., Amirabedi M., and Eftekhari-Sis B. (2012) A simplified green chemistry approach to the synthesis of carbon-carbon double bonds via knoevenagel condensation catalyzed with ZrOCl2.8H2O. J. Chem. Chem. Eng., 6 658-660.
25 Firouzabadi H., Iranpoor N., Jafarppour M., and Ghaderi A. (2006) ZrOCl2.8H2O as a highly efficient and the moisture tolerant Lewis acid catalyst for Michael addition of amines and indoles to α,β-unsaturated ketones under solvent-free conditions. J. Mol. Catal. A: Chem., 252 (1-2) 150-155.
26 Shirini F., Aolfigol M. A., and Mollarazi E. (2005) KBrO3/ ZrOCl2.8H2O: An efficient reagent system for the oxidation of alcohols. Synth. Commun., 35 (11)1541-1545.
27 Ghosh R., Maiti S., and Chakraborty A. (2005) Facile catalyzed acylation of alcohols, phenols, amines and thiols based on ZrOCl2.8H2O and acetyl chloride in solution and in solvent-free conditions. Tettrahedron Lett., 46 (1) 147-151.
28 Tayebee R., Rezaei Seresht E., Jafari F., and Rabiei S. (2013) Simple methodology for the aerobic N-Methylation of substituted anilines catalyzed by zirconium oxychloride octahydrate, ZrOCl2.8H2O. Ind. Eng. Chem. Res., 52 (32) 11001-11006.
29 Mantri K., Komura K., and Sugi Y. (2005) ZrOCl2.8H2O catalysts for the esterification of long chain aliphatic carboxylic acids and alcohols. The enhancement of catalytic performance by supporting on ordered mesoporous silica. Green Chem., 7 (9) 677-682.
30 Rahmatpour A. (2011) ZrOCl2.8H2O as a highly efficient, eco-friendly and recyclable Lewis acid catalyst for one-pot synthesis of N-substituted pyrroles under solvent-free conditions at room temperature. Appl. Organometal. Chem., 25 (8) 588-590.
31 Rezanejade Bardajee G., Jafarpour F., and Samareh Afsari H. (2010) ZrOCl2.8H2O: An efficient catalyst for rapid one-pot synthesis of 3-carboxycoumarins under ultrasound irradiation in water. Cent. Eur. J. Chem., 8 (2) 370-374.
32 Karimi S.,Karimi B., and Khodabakhshi S. (2013) Solvent-free synthesis of novel and known octahydroquinazolinones/thiones by the use of ZrOCl2.8H2O as a highly efficient and reusable catalyst. J. Chin. Chem. Soc., 60 (1) 22-60.
33 Sarita M., and Ghosh R. (2011) Efficient one-pot synthesis of functionalized piperidine scaffolds via ZrOCl2.8H2O catalyzed tandem reactions of aromatic aldehydes with amines and acetoacetic esters. Tettrahedron Lett., 52 (22) 2857-2861.
34 Tavakoli H. R.,Moosavi S. M., and Bazgir A. (2013) ZrOCl2.8H2O as an efficient catalyst for the pseudo four-component synthesis of benzopyranopyrimidines. J. Korean. Chem. Soc., 57 (2) 260-263.
35 Kappe C. O. (2000) Biologically active dihydropyrimidones of the Biginelli-type—a literature survey. Eur. J. Med. Chem., 35 (12) 1043-1052.
36 Zohdi H. F.,Rateb N. M., and Elnagdy S. M. (2011) Green synthesis and antimicrobial evaluation of some new trifluoromethyl-substituted hexahydropyrimidines by grinding. Eur. J. Med. Chem., 46 (11) 5636-5640.
37 Kamal A., Malik M. S., Bajee S., Azeeza S.,Fazel S., Ramakrishna S., Naidu V. G. M., and Vishnuwarhan M. V. P. S. (2011) Synthesis and biological evaluation of conformationally flexible as well as restricted dimers of monastrol and related dihydropyrimidones. Eur. J. Med. Chem., 46 (8) 3274-3281.
38 Singh K., Singh K., Wan B., Franzblau S., Chibale K., and Balzarini J. (2011) Facile transformation of Biginelli pyrimidin-2(1H)-ones to pyrimidines. In vitro evaluation as inhibitors of mycobacterium tuberculosis and modulators of cytostatic activity. Eur. J. Med. Chem., 46 (6) 2290-2294.
39 Singh K., Singh K., Trappanese D. M., and Moreland R. S. (2012) Highly regioselective synthesis of N-3 organophosphorous derivatives of 3,4-dihydropyrimidin-2(1H)-ones and their calcium channel binding studies. Eur. J. Med. Chem., 54 397-402.
40 Basiri A., Murugaiyah V., Osman H., Kumar R. S., Kia Y., Awang K. B., and Ali M. A. (2013) An expedient, ionic liquid mediated multi-component synthesis of novel piperidone grafted cholinesterase enzymes inhibitors and their molecular modeling study. Eur. J. Med. Chem., 67 221-229.
41 Bruno-Blanch L., Galvez J., and Garcia-Domenac R. (2003) Topological virtual screening: A way to find new anticonvulsant drugs from chemical diversity. Bioorg. Med. Chem. Lett., 13 (16) 2749-2754.
42 Ouf N. H., Selim Y. A.,Sakran M. I., and El-din A. S. B. (2014) Synthesis of pyranochromene and pyranopyrimidine derivatives from substituted natural coumarin isolated from Ammi majus L. and their biological evaluation. Med. Chem. Res., 23 (3) 1180-1188.
43 Kamdar N. R., Haveliwala D. D., Mistry P. T., and Patel S. K. (2010) Design, synthesis and in vitro evaluation of antitubercular and antimicrobial activity of some novel pyranopyrimidines. Eur. J. Med. Chem., 45 (11) 5056-5063.
44 Ghorab M. M., and Hassan A. Y. (1998) Synthesis and antibacterial properties of new dithienyl containing pyran, pyrano[2,3-b]pyridine, pyrano[2,3-b]pyrimidine and pyridine derivatives. Phosphorus. Sulfur. Silicon., 141 (1) 251-261.
45 Bruno O., Brullo C., Ranise A., Schenone S., Bondavalli F., Barocelli E., Ballabeni V., Chiavarini M., Tognolini M., and Impicciatore M. (2001) Synthesis and pharmacological evaluation of 2,5-cycloamino-5H-[1]benzopyrano[4,3-d]pyrimidines endowed with in vitro antiplatelet activity. Bioorg. Med. Chem. Lett., 11 (11) 1397-1400.
46 Bhat A. R., Shala A. H., and Dongre R. S. (2015) Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylate as potent in vitro antibacterial and antifungal activity. J. Adv. Res., 6 (6) 941-948.
47 Abdo N. Y. M. (2015) Synthesis and antitumor evaluation of novel dihydropyrimidine, thiazolo[3,2-a]pyrimidine and pyrano[2,3-d]pyrimidine derivatives. Acta. Chim. Slov., 62 (1) 168-180.
48 Shamroukh A. H.,Zaki M. E. A., Morsy E. M. H., Abdel-Motti F. M., and Abdel-Megeid F. M. E. (2007) Synthesis of pyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidine derivatives for antiviral evaluation. Arch. Pharm., 340 (5) 236-243.
49 Xing S., Wang J. R. K., Cui H., Li W., and Yan H. (2015) Lewis acid promoted three-component reactions of aziridines, arenes and aldehydes: an efficient and diastereoselective synthesis of cis 1,4-disubstituted tetrahydroisoquinolines. Tetrahedron, 71 (36) 6290-6299.
50 Ma G., Fujita T., and Sibi M. P. (2015) Lewis acid mediated diastereoselective intermolecular radical addition/trapping with pyrazolidinoneacrylimides. Tetrahedron Lett., 56 (23) 3571-3574.
51 Mohantry S., Roy A. K., Reddy G. S., Kumar K. P. V., Rama Devi B., Bhargavi G., and Karmakar A. C. (2015) Knoevenagel condensation of aromatic bisulfite adducts with 2,4- thiazolidinedione in the presence of Lewis acid catalysts. TetrahedronLett., 56 (20) 2564-2567.
52 Irvani N., Keshavarz M., Shojaeian Kish H. A., and Parandvar R. (2015) Tin sulfide nanoparticles supported on activated carbon as an efficient and reusable Lewis acid catalyst for three component one-pot synthesis of 4H-pyrano[2,3-c]pyrazole derivatives. Chin. J. Catal., 36 (4) 626-633.
53 Murarka S., Zhang C., Konieczynska M. D., and Seidel D. (2009) Lewis acid catalyzed formation of tetrahydroquinolines via an intramolecular redox process. Org. Lett., 11 (1)129-132.
54 North M.,Usanov D. L., and Young C. (2008) Lewis acid catalyzed asymmetric cyanohydrin synthesis. Chem. Rev., 108 (12) 5146-5226.
55 Mahrwald R. (1999) Diastereoselection in lewis-acid-mediated aldol additions. Chem. Rev., 99 (5)1095-1120.
56 Rimaz M., and Mousavi H. (2013) A one-pot strategy for regioselective synthesis of 6-aryl-3-oxo-2,3- dihydropyridazine-4-carbohydrazides. Turk. J. Chem., 37 252-261.
57 Rimaz M., Rabiei H., Khalili B., and Prager R. H. (2014) An efficient one-pot two-component protocol for regio- and chemoselective synthesis of 5-aryloyl-1,3,7,9-tetraalkyl-2,8-dithioxo-2,3,8,9-tetrahydro-1H-pyrano[2,3-d:6,5-dˊ]dipyrimidine-4,6(5H,7H)-diones. Aust. J. Chem., 67 (2) 283-288.
58 Rimaz M., Pourhossein P., and Khalili B. (2015) Regiospecific one-pot, combinatorial synthesis of new substituted pyrimido[4,5-c]pyridazines as potential monoamine oxidase inhibitors. Turk. J.Chem., 39 244-254.
59 Rimaz M., Mirshokraie A., Khalili B., and Motiee P. (2015) Efficient access to novel 5-aryloyl-1H-pyrano[2,3-d:6,5-d']-dipyrimidine-2,4,6,8(3H,5H,7H,9H)-tetraones and their sulfur analogs in water. Arkivoc, v, 88-98.
60 Rimaz M. (2015) Two efficient one-pot approaches for regioselective synthesis of new 3- arylpyridazino[4,3-c]quinolin-5(6H)-ones. Aust. J. Chem., 68 (10) 1529-1534.
61 Rimaz M., Jalalian Z., Mousavi H., and Prager R. H. (2016) Base organocatalyst mediated annulation of arylglyoxalmonohydrates with 2,4-dihydroxyquinoline to form new pyranodiquinolinones. Tetrahedron Lett., 57 (1) 105-109.
62 Rimaz M., Khalafy J., Mousavi H. (2016) A green organocatalyzed one-pot protocol for efficient synthesis of new substituted pyrimido[4,5-d]pyrimidinones using a Biginelli-like reaction. Res. Chem. Int., Accepted Manuscript (DOI:10.1007/s11164-016-2588-6).
63 Rimaz M., Mousavi H., Keshavarz P., and Khalili B. (2015) ZrOCl2.8H2O as a green and efficient catalyst for the expeditious synthesis of substituted 3-arylpyrimido[4,5-c]pyridazines in water. Curr. Chem. Lett., 4 (4) 159-168.