How to cite this paper
Rimaz, M., Mousavi, H., Keshavarz, P & Khalili, B. (2015). ZrOCl2.8H2O as a green and efficient catalyst for the expeditious synthesis of substituted 3-arylpyrimido[4,5-c]pyridazines in water.Current Chemistry Letters, 4(4), 159-168.
Refrences
Anastas P. T., Warner J. C. (1989) Green Chemistry: Theory and Practice, New York: Oxford University Press.
2. Matlack A. S. (2001) Introduction to Green Chemistry, New York: Marcel Dekker Inc.
3. Lancester M. (2002) Green Chemistry: An Introductory Text, Royal Society of Chemistry Cambridge.
4. Clark J. H., Macquarrie, D. (2002) Handbook of Green Chemistry & Technology, Oxford: Blackwell Publishers.
5. Dallinger D., Kappe C. O. (2007) Microwave-Assisted Synthesis in Water as Solvent. Chem. Rev., 107, 2563-2591.
6. Domling A. (2006) Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev., 106, 17-89
7. (a) Alcaide B., Almendros P., Aragoncillo C., Callejo R., Ruiz M. P., Torres M. R. (2012) Diastereoselective Synthesis of B-Lactam–Oxindole Hybrids Through a Three-Component Reaction of Azetidine-2,3-diones, ?-Diazo-oxindoles, and Alcohols Catalyzed by [Rh2(OAc)4]. Eur. J. Org. Chem., 12, 2359-2366. (b) Terret N. K., Gardner M., Gordon D. W., Kobylecki R. J., Steel J. (1995) Combinatorial Synthesis- The Design of Compound Libraries and their Application to Drug Discovery. Tetrahedron.,51, 8135-8173.
8. (a) Armstrong R. W., Combs A. P., Tempest P. A., Brown S. D., Keating T. A. (1996) Multiple-Component Condensation Strategies for Combinatorial Library Synthesis. Acc. Chem. Res., 29, 123-131. (b) Posner G. H. (1986) Multicomponent One-Pot Annulations Forming Three to SixBondst. Chem. Rev.,86, 831-844. (c) Tietze L. F., Beifuss U. (1993) Sequential Transformations in Organic Chemistry: A Synthetic Strategy with a Future. Angew. Chem. Int. Ed.,32, 131-132. (d) Bunce R. A. (1995) Recent Advances in the Use of Tandem Reactions for Organic Synthesis. Tetrahedron., 51, 13103-13159.
9. (a) Hulme C., Gore V. (2003) Multi-component reactions : emerging chemistry in drug discovery from xylocain to crixivan. Curr. Med. Chem.,10, 51-80. (b) Lieby-Muller F., Constantieux T., Rodriguez J. (2005) Multicomponent Domino Reaction from Ketoamides: Highly Efficient Access to Original Polyfunctionalized 2,6-Diazabicyclo[2.2.2]octane Cores. J. Am. Chem. Soc.,127, 17176-17177.
10. (a) Rival Y., Hoffmann R., Didier B., Rybaltchenko V., Bourguignon J. J., Wermuth C. G. (1998) 5-HT3 Antagonists Derived from Aminopyridazine-type Muscarinic M1 Agonists. J. Med. Chem.,41, 311-317. (b) Contreras J. M., Parrot I., Sippl W., Rival Y., Wermuth C .G. (2001) Design, Synthesis, and Structure-Activity Relationships of a Series of 3-[2-(1-Benzylpiperidin-4-yl)ethylamino] pyridazine Derivatives as Acetylcholinesterase Inhibitors. J. Med. Chem.,44, 2707-2718. (c) Montesano F., Barlocco D., Dal Piaz V., Leonardi A., Poggesi E., Fanelli F., de Benedetti P. G. (1998) Isoxazolo-[3,4-d]-pyridazin-7-(6H)-ones and their Corresponding 4,5-Disubstituted-3-(2H)-pyridazinone Analogues as New Substrates for ?1-Adrenoceptor Selective Antagonists: Synthesis, Modeling, and Binding Studies. Bioorg. Med. Chem.,6, 925-935. (d) Biancanali C., Giovannoni M. P., Pieretti S., Cesari N., Graciano A, Vergelli C., Cilibrizzi A., di Gianuario A., Colucci M., Mangano G., Garrone B., Polenzani, L., dal Piaz V. (2009) Further Studies on Arylpiperazinyl Alkyl Pyridazinones: Discovery of an Exceptionally Potent, Orally Active, Antinociceptive Agent in Thermally Induced Pain. J. Med. Chem.,52, 7397-7409
11. (a) Rodrguez-Ciria M., Sanz A. M., Yunta M. J. R., Gomez-Contreras F., Navarro P., Fernandez I., Pardo M., Cano C. (2003) Synthesis and Cytotoxic Activity of N,N-bis-{3-[N-(4- Chlorobenzo[g]-phthalazin-1-yl)]aminopropyl}-N-methylamine: A New Potential DNA Bisintercalator. Bioorg. Med. Chem.,11, 2143-2148. (b) Bloomer L. C., Wotring L. L., Townsend, L. B. (1982) Cytotoxity of a New Uridine Analog, 4-Hydroxy-1-(B-D-ribofuranosyl)-Pyridazin-6-One, and Its Interaction with Uridine Kinase. Cancer. Res., 42, 100-106.
12. (a) Demirayak S., Karaburn A. C., Beis R. (2004) Some pyrrole substituted aryl pyridazinone and phthalazinone derivativesand their antihypertensive activities. Eur. J. Med. Chem.,39, 1089-1095. (b) Gokçe M., Dogruer D., Fethi Sahin M. (2001) Synthesis and antinociceptive activity of 6-substituted-3-pyridazinone derivatives. II Farmaco.,56, 223-237. (c) Lee S. G., Kim J. J., Kim K. H., Kweon D. H., Kang Y. J., Cho S. D., Kim S. K., Yoon Y. (2004) Recent Progress in Pyridazin-3(2H)-Ones Chemistry. J. Curr. Org. Chem.,8, 1463-1480.
13. Orru R. V. A., de Greaf M. (2003) Recent Advances in Solution-Phase Multicomponent Methodology for the Synthesis of Heterocyclic Compounds. Synthesis.,10, 1471-1499.
14. (a) Butnariu R., Caprosu M., Bejan V., Ungureanu M., Poiata A., Tuchilus C., Florescu M., Mangalagiu I. I. (2007) Pyridazine and Phthalazine Derivatives with 1149 Potential Antimicrobial Activity. J. Het. Chem.,44, 1149-1155. (b) Caprosu M., Butnariu R., Mangalagiu I. I. (2005) Synthesis and antimicrobial activity of some new pyridazine derivatives. Heterocycles.,65, 1871-1879.
15. Coelho A., Sotelo E., Ravina E. (2003) Pyridazine derivatives. Part 33: Sonogashira approaches in the synthesis of 5-substituted-6-phenyl-3(2H)-pyridazinones. Tetrahedron., 59, 2477-2488.
16. Livermone D. G. H., Bethell R. C., Cammack N., Hancock A. P., Hann M. M., Green D. V. S., Lamont R. B., Noble S. A., Orr D. C., Payne J. J., Ramsay M. V. J., Shingler A. H., Smith A. H., Storer R., Williamson C., Willson t., (1993) Synthesis and Anti-HIV-1 Activity of a Series of Imidazo[ 1,5-b]pyridazines. J. Med. Chem., 36, 3784-3794
17. Altomare C., Cellamare S., Summo L., Catto M., Carotti A. (1998) Inhibition of Monoamine Oxidase-B by Condensed Pyridazines and Pyrimidines: Effects of Lipophilicity and Structure-Activity Relationships. J. Med. Chem.,41, 3812-3820.
18. Patil P. O., Bari S. B., Firke S. D., Deshmukh P. K., Donda S. T., Patil D. A. (2013) A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer’s disease. Bioorg. Med. Chem., 21, 2434-2450.
19. LewisR. J. (1989) Dangerous Properties of Industrial Materials, vol 3, 8th ed. New York: Van Nostrand Reinhold.
20. Chakraborti A., Gulhane K. (2004) Zirconium(IV) Chloride as a New, Highly Efficient, and Reusable Catalyst for Acetylation of Phenols, Thiols, Amines, and Alcohols under Solvent-Free Conditions. Synlett., 4, 627-630.
21. Ghosh R., Maiti S., Chakraborty A. (2005) Facile catalyzed acylation of alcohols, phenols, amines and thiols based on ZrOCl2·8H2O and acetyl chloride in solution and in solvent-free conditions. Tetrahedron Lett., 46, 147-151.
22. Mantri K., Komura K., Sugi Y. (2005) ZrOCl2.8H2O catalysts for the esterification of long chain aliphatic carboxylic acids and alcohols. The enhancement of catalytic performance by supporting on ordered mesoporous silica. Green Chem., 7, 677-682
23. Shirini, F.; Zolfigol, M. A.; Mollarazi, E. (2005) ZrOCl2.8H2O as an Efficient Reagent for the Solvent-Free Synthesis of 3,4-Dihydropyrimidin-2-(1H)-ones. Synth. Commun., 35,1541-1545.
24. Khalili B., Sadeghzadeh Darabi F., Eftekhari-Sis B., Rimaz M. (2013) Green chemistry: ZrOCl2.8H2O catalyzed regioselective synthesis of 5-amino-1-aryl-1H-tetrazolesfrom secondary arylcyanamides in water. Monatsh. Chem., 144, 1569-1572.
25. Panchal Sh., Jhala Y., Soni A., Ameta S. C. (2013) In: Ameta SC, Ameta P. Green Chemistry:Fundamentals and Applications. Apple Academic Press, Inc.
26. Rimaz M., Khalafy J., Noroozi Pesyan N., Prager R. H. (2010) A Simple One-Pot, Three Component Synthesis of 3-Arylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-diones and their Sulfur Analogues as Potential Monoamine Oxidase Inhibitors. Aust. J. Chem., 63, 507-510.
27. Jori A., Calamari D., Cattabeni F., Domenico A. D., Galli C. L., Gall E., Silano V. (1983) Ecotoxicological profile of Pyridine: Working party on ecotoxicological profiles of chemicals. Ecotoxi. Environ. Saf., 7, 251-275.
28. Othmer, K. (1996) Encyclopedia of Chemical Technology, vol 20, 4th ed., New York: John Wiley & Sons Inc.
29. Lewis, R. (2004) Dangerous Properties of Industrial Materials, 11th ed., NJ: John Wiley & Sons.
30. (a) Zalat O. A., Elsayed M. A., (2013) A study on microwave removal of pyridine from wastewater. J. Environ. Chem. Eng. 137-143. (b) Baei M. T. (2013)Remove of toxic pyridine from environmental systems by using B12N12nano-cage. Superlattices and Microstructures. 58. 31-73. (c) Subbaramaiah M., Srivastava V. C., Mall I. D. (2013) Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15. J. Hazard. Mat. 355-363. (d) Wheelock G. E., Forshed J., Goto S., Hammock B. D., Newmann J. W. (2008) Effects of Pyridine Exposure upon Structural Lipid Metabolism in Swiss Webster Mice. Chem. Res. Toxicol., 21,583–590.
31. Lataye, D. H. Mishra I.M., Mall I. D. (2006) Removal of Pyridine from Aqueous Solution by Adsorption on Bagasse Fly Ash. Ind. Eng. Chem. Res.,45, 3934-3943.
32. Rimaz M., Noroozi Pesyan N., Khalafy J. (2010) Tautomerism and isotopic multiplets in the 13C NMR spectra of partially deuterated 3-arylpyrimido[4,5-c]pyridazine-5,7(6H,8H)- diones and their sulfur analogs – evidence for elucidation of the structure backbone and tautomeric forms. Magn. Reson. Chem.,48, 276-285.
33. Rimaz M., Mousavi H. (2013) A one-pot strategy for regioselective synthesis of 6-aryl-3-oxo-2,3-dihydropyridazine-4-carbohydrazides. Turk. J. Chem.,37, 252-261.
34. Noroozi Pesyan N., Khalafy J., Rimaz M. (2013) Mass spectroscopy of 3-arylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-diones and 3- aryl-7-thioxo-7,8-dihydro-6H-pyrimido[4,5-c]pyridazine-5-ones: Dimers containing water cluster and quasi-covalent hydrogen bond. Curr. Chem. Lett.,2, 177-186.
35. Eftekhari-Sis B., Zirak M., Akbari A. (2013) Arylglyoxals in Synthesis of Heterocyclic Compounds. Chem. Rev., 113, 2958-3043.
36. Khalili B., Rimaz M. (2014) Ultrasound-promoted synthesis of (4 or 5)-aryl-2-aryloyl-(1H)-imidazoles in water. Curr. Chem. Lett., 3, 49-56.
37. Rimaz M., Rabiei H., Khalili B., Prager R. H. (2014) An Efficient One-pot Two-component Protocolfor Regio- and Chemoselective Synthesis of 5-Aryloyl- 1,3,7,9-tetraalkyl-2,8-dithioxo-2,3,8,9-tetrahydro- 1H-pyrano[2,3-d:6,5-d’]dipyrimidine-4,6(5H,7H)-diones. Aust. J. Chem., 67, 283-288.
38. Rimaz M., Pourhossein P., Khalili B. (2015) Regiospecific one-pot, combinatorial synthesis of new substituted pyrimido[4,5-c]pyridazines as potential monoamine oxidase inhibitors. Turk. J. Chem., 39, 244-254.
39. Rimaz M., Mishokraie A., Khalili B., Motiee P. (2015) Efficient access to novel 5-aryloyl-1H-pyrano[2,3-d:6,5-d & apos; ]-dipyrimidine-2,4,6,8(3H,5H,7H,9H)-tetraones and their sulfur analogs in water. Arkivoc, (v), 88-98.
40. Rimaz M. (2015) Two Efficient One-Pot Approaches for Regioselective Synthesis of New 3-Arylpyridazino[4,3-c]quinolin-5(6H)-ones. Aust. J. Chem., 67, in press, DOI: dx.doi.org/10.1071/CH15029.
2. Matlack A. S. (2001) Introduction to Green Chemistry, New York: Marcel Dekker Inc.
3. Lancester M. (2002) Green Chemistry: An Introductory Text, Royal Society of Chemistry Cambridge.
4. Clark J. H., Macquarrie, D. (2002) Handbook of Green Chemistry & Technology, Oxford: Blackwell Publishers.
5. Dallinger D., Kappe C. O. (2007) Microwave-Assisted Synthesis in Water as Solvent. Chem. Rev., 107, 2563-2591.
6. Domling A. (2006) Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev., 106, 17-89
7. (a) Alcaide B., Almendros P., Aragoncillo C., Callejo R., Ruiz M. P., Torres M. R. (2012) Diastereoselective Synthesis of B-Lactam–Oxindole Hybrids Through a Three-Component Reaction of Azetidine-2,3-diones, ?-Diazo-oxindoles, and Alcohols Catalyzed by [Rh2(OAc)4]. Eur. J. Org. Chem., 12, 2359-2366. (b) Terret N. K., Gardner M., Gordon D. W., Kobylecki R. J., Steel J. (1995) Combinatorial Synthesis- The Design of Compound Libraries and their Application to Drug Discovery. Tetrahedron.,51, 8135-8173.
8. (a) Armstrong R. W., Combs A. P., Tempest P. A., Brown S. D., Keating T. A. (1996) Multiple-Component Condensation Strategies for Combinatorial Library Synthesis. Acc. Chem. Res., 29, 123-131. (b) Posner G. H. (1986) Multicomponent One-Pot Annulations Forming Three to SixBondst. Chem. Rev.,86, 831-844. (c) Tietze L. F., Beifuss U. (1993) Sequential Transformations in Organic Chemistry: A Synthetic Strategy with a Future. Angew. Chem. Int. Ed.,32, 131-132. (d) Bunce R. A. (1995) Recent Advances in the Use of Tandem Reactions for Organic Synthesis. Tetrahedron., 51, 13103-13159.
9. (a) Hulme C., Gore V. (2003) Multi-component reactions : emerging chemistry in drug discovery from xylocain to crixivan. Curr. Med. Chem.,10, 51-80. (b) Lieby-Muller F., Constantieux T., Rodriguez J. (2005) Multicomponent Domino Reaction from Ketoamides: Highly Efficient Access to Original Polyfunctionalized 2,6-Diazabicyclo[2.2.2]octane Cores. J. Am. Chem. Soc.,127, 17176-17177.
10. (a) Rival Y., Hoffmann R., Didier B., Rybaltchenko V., Bourguignon J. J., Wermuth C. G. (1998) 5-HT3 Antagonists Derived from Aminopyridazine-type Muscarinic M1 Agonists. J. Med. Chem.,41, 311-317. (b) Contreras J. M., Parrot I., Sippl W., Rival Y., Wermuth C .G. (2001) Design, Synthesis, and Structure-Activity Relationships of a Series of 3-[2-(1-Benzylpiperidin-4-yl)ethylamino] pyridazine Derivatives as Acetylcholinesterase Inhibitors. J. Med. Chem.,44, 2707-2718. (c) Montesano F., Barlocco D., Dal Piaz V., Leonardi A., Poggesi E., Fanelli F., de Benedetti P. G. (1998) Isoxazolo-[3,4-d]-pyridazin-7-(6H)-ones and their Corresponding 4,5-Disubstituted-3-(2H)-pyridazinone Analogues as New Substrates for ?1-Adrenoceptor Selective Antagonists: Synthesis, Modeling, and Binding Studies. Bioorg. Med. Chem.,6, 925-935. (d) Biancanali C., Giovannoni M. P., Pieretti S., Cesari N., Graciano A, Vergelli C., Cilibrizzi A., di Gianuario A., Colucci M., Mangano G., Garrone B., Polenzani, L., dal Piaz V. (2009) Further Studies on Arylpiperazinyl Alkyl Pyridazinones: Discovery of an Exceptionally Potent, Orally Active, Antinociceptive Agent in Thermally Induced Pain. J. Med. Chem.,52, 7397-7409
11. (a) Rodrguez-Ciria M., Sanz A. M., Yunta M. J. R., Gomez-Contreras F., Navarro P., Fernandez I., Pardo M., Cano C. (2003) Synthesis and Cytotoxic Activity of N,N-bis-{3-[N-(4- Chlorobenzo[g]-phthalazin-1-yl)]aminopropyl}-N-methylamine: A New Potential DNA Bisintercalator. Bioorg. Med. Chem.,11, 2143-2148. (b) Bloomer L. C., Wotring L. L., Townsend, L. B. (1982) Cytotoxity of a New Uridine Analog, 4-Hydroxy-1-(B-D-ribofuranosyl)-Pyridazin-6-One, and Its Interaction with Uridine Kinase. Cancer. Res., 42, 100-106.
12. (a) Demirayak S., Karaburn A. C., Beis R. (2004) Some pyrrole substituted aryl pyridazinone and phthalazinone derivativesand their antihypertensive activities. Eur. J. Med. Chem.,39, 1089-1095. (b) Gokçe M., Dogruer D., Fethi Sahin M. (2001) Synthesis and antinociceptive activity of 6-substituted-3-pyridazinone derivatives. II Farmaco.,56, 223-237. (c) Lee S. G., Kim J. J., Kim K. H., Kweon D. H., Kang Y. J., Cho S. D., Kim S. K., Yoon Y. (2004) Recent Progress in Pyridazin-3(2H)-Ones Chemistry. J. Curr. Org. Chem.,8, 1463-1480.
13. Orru R. V. A., de Greaf M. (2003) Recent Advances in Solution-Phase Multicomponent Methodology for the Synthesis of Heterocyclic Compounds. Synthesis.,10, 1471-1499.
14. (a) Butnariu R., Caprosu M., Bejan V., Ungureanu M., Poiata A., Tuchilus C., Florescu M., Mangalagiu I. I. (2007) Pyridazine and Phthalazine Derivatives with 1149 Potential Antimicrobial Activity. J. Het. Chem.,44, 1149-1155. (b) Caprosu M., Butnariu R., Mangalagiu I. I. (2005) Synthesis and antimicrobial activity of some new pyridazine derivatives. Heterocycles.,65, 1871-1879.
15. Coelho A., Sotelo E., Ravina E. (2003) Pyridazine derivatives. Part 33: Sonogashira approaches in the synthesis of 5-substituted-6-phenyl-3(2H)-pyridazinones. Tetrahedron., 59, 2477-2488.
16. Livermone D. G. H., Bethell R. C., Cammack N., Hancock A. P., Hann M. M., Green D. V. S., Lamont R. B., Noble S. A., Orr D. C., Payne J. J., Ramsay M. V. J., Shingler A. H., Smith A. H., Storer R., Williamson C., Willson t., (1993) Synthesis and Anti-HIV-1 Activity of a Series of Imidazo[ 1,5-b]pyridazines. J. Med. Chem., 36, 3784-3794
17. Altomare C., Cellamare S., Summo L., Catto M., Carotti A. (1998) Inhibition of Monoamine Oxidase-B by Condensed Pyridazines and Pyrimidines: Effects of Lipophilicity and Structure-Activity Relationships. J. Med. Chem.,41, 3812-3820.
18. Patil P. O., Bari S. B., Firke S. D., Deshmukh P. K., Donda S. T., Patil D. A. (2013) A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer’s disease. Bioorg. Med. Chem., 21, 2434-2450.
19. LewisR. J. (1989) Dangerous Properties of Industrial Materials, vol 3, 8th ed. New York: Van Nostrand Reinhold.
20. Chakraborti A., Gulhane K. (2004) Zirconium(IV) Chloride as a New, Highly Efficient, and Reusable Catalyst for Acetylation of Phenols, Thiols, Amines, and Alcohols under Solvent-Free Conditions. Synlett., 4, 627-630.
21. Ghosh R., Maiti S., Chakraborty A. (2005) Facile catalyzed acylation of alcohols, phenols, amines and thiols based on ZrOCl2·8H2O and acetyl chloride in solution and in solvent-free conditions. Tetrahedron Lett., 46, 147-151.
22. Mantri K., Komura K., Sugi Y. (2005) ZrOCl2.8H2O catalysts for the esterification of long chain aliphatic carboxylic acids and alcohols. The enhancement of catalytic performance by supporting on ordered mesoporous silica. Green Chem., 7, 677-682
23. Shirini, F.; Zolfigol, M. A.; Mollarazi, E. (2005) ZrOCl2.8H2O as an Efficient Reagent for the Solvent-Free Synthesis of 3,4-Dihydropyrimidin-2-(1H)-ones. Synth. Commun., 35,1541-1545.
24. Khalili B., Sadeghzadeh Darabi F., Eftekhari-Sis B., Rimaz M. (2013) Green chemistry: ZrOCl2.8H2O catalyzed regioselective synthesis of 5-amino-1-aryl-1H-tetrazolesfrom secondary arylcyanamides in water. Monatsh. Chem., 144, 1569-1572.
25. Panchal Sh., Jhala Y., Soni A., Ameta S. C. (2013) In: Ameta SC, Ameta P. Green Chemistry:Fundamentals and Applications. Apple Academic Press, Inc.
26. Rimaz M., Khalafy J., Noroozi Pesyan N., Prager R. H. (2010) A Simple One-Pot, Three Component Synthesis of 3-Arylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-diones and their Sulfur Analogues as Potential Monoamine Oxidase Inhibitors. Aust. J. Chem., 63, 507-510.
27. Jori A., Calamari D., Cattabeni F., Domenico A. D., Galli C. L., Gall E., Silano V. (1983) Ecotoxicological profile of Pyridine: Working party on ecotoxicological profiles of chemicals. Ecotoxi. Environ. Saf., 7, 251-275.
28. Othmer, K. (1996) Encyclopedia of Chemical Technology, vol 20, 4th ed., New York: John Wiley & Sons Inc.
29. Lewis, R. (2004) Dangerous Properties of Industrial Materials, 11th ed., NJ: John Wiley & Sons.
30. (a) Zalat O. A., Elsayed M. A., (2013) A study on microwave removal of pyridine from wastewater. J. Environ. Chem. Eng. 137-143. (b) Baei M. T. (2013)Remove of toxic pyridine from environmental systems by using B12N12nano-cage. Superlattices and Microstructures. 58. 31-73. (c) Subbaramaiah M., Srivastava V. C., Mall I. D. (2013) Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15. J. Hazard. Mat. 355-363. (d) Wheelock G. E., Forshed J., Goto S., Hammock B. D., Newmann J. W. (2008) Effects of Pyridine Exposure upon Structural Lipid Metabolism in Swiss Webster Mice. Chem. Res. Toxicol., 21,583–590.
31. Lataye, D. H. Mishra I.M., Mall I. D. (2006) Removal of Pyridine from Aqueous Solution by Adsorption on Bagasse Fly Ash. Ind. Eng. Chem. Res.,45, 3934-3943.
32. Rimaz M., Noroozi Pesyan N., Khalafy J. (2010) Tautomerism and isotopic multiplets in the 13C NMR spectra of partially deuterated 3-arylpyrimido[4,5-c]pyridazine-5,7(6H,8H)- diones and their sulfur analogs – evidence for elucidation of the structure backbone and tautomeric forms. Magn. Reson. Chem.,48, 276-285.
33. Rimaz M., Mousavi H. (2013) A one-pot strategy for regioselective synthesis of 6-aryl-3-oxo-2,3-dihydropyridazine-4-carbohydrazides. Turk. J. Chem.,37, 252-261.
34. Noroozi Pesyan N., Khalafy J., Rimaz M. (2013) Mass spectroscopy of 3-arylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-diones and 3- aryl-7-thioxo-7,8-dihydro-6H-pyrimido[4,5-c]pyridazine-5-ones: Dimers containing water cluster and quasi-covalent hydrogen bond. Curr. Chem. Lett.,2, 177-186.
35. Eftekhari-Sis B., Zirak M., Akbari A. (2013) Arylglyoxals in Synthesis of Heterocyclic Compounds. Chem. Rev., 113, 2958-3043.
36. Khalili B., Rimaz M. (2014) Ultrasound-promoted synthesis of (4 or 5)-aryl-2-aryloyl-(1H)-imidazoles in water. Curr. Chem. Lett., 3, 49-56.
37. Rimaz M., Rabiei H., Khalili B., Prager R. H. (2014) An Efficient One-pot Two-component Protocolfor Regio- and Chemoselective Synthesis of 5-Aryloyl- 1,3,7,9-tetraalkyl-2,8-dithioxo-2,3,8,9-tetrahydro- 1H-pyrano[2,3-d:6,5-d’]dipyrimidine-4,6(5H,7H)-diones. Aust. J. Chem., 67, 283-288.
38. Rimaz M., Pourhossein P., Khalili B. (2015) Regiospecific one-pot, combinatorial synthesis of new substituted pyrimido[4,5-c]pyridazines as potential monoamine oxidase inhibitors. Turk. J. Chem., 39, 244-254.
39. Rimaz M., Mishokraie A., Khalili B., Motiee P. (2015) Efficient access to novel 5-aryloyl-1H-pyrano[2,3-d:6,5-d & apos; ]-dipyrimidine-2,4,6,8(3H,5H,7H,9H)-tetraones and their sulfur analogs in water. Arkivoc, (v), 88-98.
40. Rimaz M. (2015) Two Efficient One-Pot Approaches for Regioselective Synthesis of New 3-Arylpyridazino[4,3-c]quinolin-5(6H)-ones. Aust. J. Chem., 67, in press, DOI: dx.doi.org/10.1071/CH15029.