How to cite this paper
Lautre, H., Hadda, T., Das, S & Pillai, A. (2015). Biological evaluation of inhibitors of reverse transcriptase from HIV type-1.Current Chemistry Letters, 4(1), 7-20.
Refrences
1. Global update on HIV treatment (2013) Results, impact and opportunities.
2. Bellucci L., Angeli L., Tafi A., Radi M., and Botta M. (2013) Unconventional Plasticity of HIV-1 Reverse Transcriptase: How Inhibitors Could Open a Connection “Gate” between Allosteric and Catalytic Sites. J. Chem. Inf. Model., 53, 3117–3122.
3. Iyidogan P., Sullivan T. J., Chordia M. D., Frey K. M., and Anderson K. S. (2013) Design, Synthesis, and Antiviral Evaluation of Chimeric Inhibitors of HIV Reverse Transcriptase. ACS Med. Chem. Lett., 4, 1183–1188.
4. Hua R., Doucet, J.P., Delamar, M., and Zhang, R. (2009) QSAR models for 2-amino-6-arylsulfonylbenzonitriles and congeners HIV-1reverse transcriptase inhibitors based on linear and nonlinear regression methods. Eur. J. Med. Chem., 44, 2158–2171.
5. Reeves J.D., and Doms R.W. (2002) Human immunodeficiency virus type 2. J. Gen. Virol., 83, 1253–1265.
6. Clercq E. D. (2002) New anti-HIV agents and targets. Med. Res. Rev., 22, 531–565.
7. Telesnitsky A., and Goff S.P. (1997) Reverse transcriptase and the generation of retroviral DNA, in: Retroviruses, Cold Spring Harbor Laboratory Press, 121-160.
8. Nikolenko G.N., Palmer S., Maldarelli F., Mellors J.W., Coffin J.M., and Pathak V.K. (2005) Mechanism for nucleoside analog-mediated abrogation of HIV-1 replication: balance between RNase H activity and nucleotide excision. Proc. Natl. Acad. Sci. U. S. A., 102, 2093-2098.
9. Jochmans D. (2008) Novel HIV-1 reverse transcriptase inhibitors. Virus Res., 134, 171-185.
10. Daisley R. W., and Shah V. K. (1984) Synthesis and antibacterial activity of some 5-Nitro-3-phenyliminoindol-2(3H)-ones and their N-mannich bases. J. Pharm. Sci., 73, 407-408.
11. Mock C., Puscasu I., Rauterkus M.J., Tallen G., Wolff J.E.A., and Krebs B. (2001) Novel Pt(II) anticancer agents and their Pd(II) analogues: syntheses, crystal structures, reactions with nucleobases and cytotoxicities. Inorg. Chim. Acta., 319 109–116.
12. Czapski G., and Goldstein S. (1991) Requirements for Sod Mimics Operating In Vitro to Work Also In Vivo. Free. Radic. Res., 12, 167–171.
13. Sun R.W.-Y., Ma D.-L., Wong E.L.-M., and Che C.-M. (2007) Some uses of transition metal complexes as anti-cancer and anti-HIV agents. Dalton Trans., 4884–4892.
14. Tepperman K., Zhang Y., Roy P.W., Floyd R., Zhao Z., Dorsey J.G., and Elder R.C. (1994) Transport of Dicyanogold (I) Anion. Metal Based Drugs, 1 433–443.
15. Wang B.L., Li Y.H., Wang J.G., Ma Y., and Li Z.M. (2004) Molecular design, synthesis and biological activities of amidine as new ketol-acid reductoisomerase inhibitors. Bioorg. Med. Chem., 12, 5415-26.
16. Vicini P, and Zani F. (2005) Synthesis and antimicrobial activity of N-(1,2-benzisothiazol-3-yl)amidine. Bioorg Med Chem., 13, 1587-97.
17. Marchenko N.B., Granik V.G., Glushkov R.G., Budanova L.I., Kuzovkin V.A., Parshin V.A., and Al & apos; tshuler R.A. (1997) Synthesis and biological activity of N-(B-arylethyl)amidine and N,N?-bis(B-arylethyl)amidine. Farmaco., 52, 21-24.
18. Raman N., Pothiraj K., and Baskaran T. (2011) DNA interaction, antimicrobial, electrochemical and spectroscopic studies of metal(II) complexes with tridentate heterocyclic Schiff base derived from 2?-methylacetoacetanilide. J. Mol. Stru., 1000, 135-144.
19. Sheikh J., Juneja H., Ingle V., Ali P., and Hadda T.B. (2013) Synthesis and in vitro biology of Co(II), Ni(II), Cu(II) and Zn(II) complexes of functionalized beta-diketone bearing energy buried potential antibacterial and antiviral O,O Pharmacophore sites, J. Sau. Chem. Soc., 17, 269-276.
20. Wolf G.H. and Shimer M.T. (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochem. 26, 6392-6396.
21. Patil S.A., Naika V.H., Kulkarni A.D., and Badami P.S. (2010) DNA cleavage, antimicrobial, spectroscopic and fluorescence studies of Co(II), Ni(II) and Cu(II) complexes with SNO donor coumarin Schiff bases. Spectrochim. Acta A., 75, 347–354.
22. Shiju C., Arish D., and Kumaresan S. (2013) Homodinuclear lanthanide complexes of phenylthiopropionic acid: Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity. Spectro. Acta Part A: Mol. Biomol. Spectro., 105, 532-538.
23. Khoo T.J., Break M. K. B., Crouse, K.A., Tahir, M. I. M., Ali, A.M., Cowley, A.R., Watkin, D.J., and Tarafder, M.T.H. (2014) Synthesis, characterization and biological activity of two Schiff base ligand (2)s and their nickel(II), copper(II), zinc(II) and cadmium(II) complexes derived from S-4-picolyldithiocarbazate and X-ray crystal structure of cadmium(II) complex derived from pyridine-2-carboxaldehyde. Inorg. Chim. Acta., 413,68-76.
24. Pascaline N. F., Frankline K. K., Debra M., Ilia A. G., and James D. (2009) Tetra-chloro-(bis-(3,5-dimethylpyrazolyl)methane)gold(III) chloride: An HIV-1reverse transcriptase and protease inhibitor. J. Inorg. Biochem. 103, 190-194.
25. Yang S., Pannecouque C., Daelemans D., Ma X. D., Liu Y., Chen Fen-Er, and Clercq E. D. (2013). Molecular design, synthesis and biological evaluation of BP-O-DAPY and O-DAPY derivatives as non-nucleoside HIV-1 reverse transcriptase inhibitors. European J. Med. Chem., 65, 134-143.
26. Wang J., Liang H., Bacheler L., Wu H., Deriziotis K., Demeter L. M., and Dykes C. (2010). The non-nucleoside reverse transcriptase inhibitor efavirenz stimulates replication of human immunodeficiency virus type 1 harboring certain non-nucleoside resistance mutations. Viro., 402, 228-237.
27. Lautre H.K., Patil K., Youssouffi H., Hadda T.B., Bhatia V., and Pillai A.K. (2014) Synthesis and biological evaluation of purine nucleoside phosphorylase inhibitors from P. falciparum. World J Pharma Pharmaceut. Sci., 3, 1053-1068.
28. Lautre H.K., Pandey S., Patil K., and Pillai A.K. (2013) 3-amino-n-hydroxybenzamidine and their transition metal complexes: synthesis and evaluation as thymidylate kinase inhibitors of M.tuberculosis. Internat. J. Multidisci. Res., 2, 65-69.
2. Bellucci L., Angeli L., Tafi A., Radi M., and Botta M. (2013) Unconventional Plasticity of HIV-1 Reverse Transcriptase: How Inhibitors Could Open a Connection “Gate” between Allosteric and Catalytic Sites. J. Chem. Inf. Model., 53, 3117–3122.
3. Iyidogan P., Sullivan T. J., Chordia M. D., Frey K. M., and Anderson K. S. (2013) Design, Synthesis, and Antiviral Evaluation of Chimeric Inhibitors of HIV Reverse Transcriptase. ACS Med. Chem. Lett., 4, 1183–1188.
4. Hua R., Doucet, J.P., Delamar, M., and Zhang, R. (2009) QSAR models for 2-amino-6-arylsulfonylbenzonitriles and congeners HIV-1reverse transcriptase inhibitors based on linear and nonlinear regression methods. Eur. J. Med. Chem., 44, 2158–2171.
5. Reeves J.D., and Doms R.W. (2002) Human immunodeficiency virus type 2. J. Gen. Virol., 83, 1253–1265.
6. Clercq E. D. (2002) New anti-HIV agents and targets. Med. Res. Rev., 22, 531–565.
7. Telesnitsky A., and Goff S.P. (1997) Reverse transcriptase and the generation of retroviral DNA, in: Retroviruses, Cold Spring Harbor Laboratory Press, 121-160.
8. Nikolenko G.N., Palmer S., Maldarelli F., Mellors J.W., Coffin J.M., and Pathak V.K. (2005) Mechanism for nucleoside analog-mediated abrogation of HIV-1 replication: balance between RNase H activity and nucleotide excision. Proc. Natl. Acad. Sci. U. S. A., 102, 2093-2098.
9. Jochmans D. (2008) Novel HIV-1 reverse transcriptase inhibitors. Virus Res., 134, 171-185.
10. Daisley R. W., and Shah V. K. (1984) Synthesis and antibacterial activity of some 5-Nitro-3-phenyliminoindol-2(3H)-ones and their N-mannich bases. J. Pharm. Sci., 73, 407-408.
11. Mock C., Puscasu I., Rauterkus M.J., Tallen G., Wolff J.E.A., and Krebs B. (2001) Novel Pt(II) anticancer agents and their Pd(II) analogues: syntheses, crystal structures, reactions with nucleobases and cytotoxicities. Inorg. Chim. Acta., 319 109–116.
12. Czapski G., and Goldstein S. (1991) Requirements for Sod Mimics Operating In Vitro to Work Also In Vivo. Free. Radic. Res., 12, 167–171.
13. Sun R.W.-Y., Ma D.-L., Wong E.L.-M., and Che C.-M. (2007) Some uses of transition metal complexes as anti-cancer and anti-HIV agents. Dalton Trans., 4884–4892.
14. Tepperman K., Zhang Y., Roy P.W., Floyd R., Zhao Z., Dorsey J.G., and Elder R.C. (1994) Transport of Dicyanogold (I) Anion. Metal Based Drugs, 1 433–443.
15. Wang B.L., Li Y.H., Wang J.G., Ma Y., and Li Z.M. (2004) Molecular design, synthesis and biological activities of amidine as new ketol-acid reductoisomerase inhibitors. Bioorg. Med. Chem., 12, 5415-26.
16. Vicini P, and Zani F. (2005) Synthesis and antimicrobial activity of N-(1,2-benzisothiazol-3-yl)amidine. Bioorg Med Chem., 13, 1587-97.
17. Marchenko N.B., Granik V.G., Glushkov R.G., Budanova L.I., Kuzovkin V.A., Parshin V.A., and Al & apos; tshuler R.A. (1997) Synthesis and biological activity of N-(B-arylethyl)amidine and N,N?-bis(B-arylethyl)amidine. Farmaco., 52, 21-24.
18. Raman N., Pothiraj K., and Baskaran T. (2011) DNA interaction, antimicrobial, electrochemical and spectroscopic studies of metal(II) complexes with tridentate heterocyclic Schiff base derived from 2?-methylacetoacetanilide. J. Mol. Stru., 1000, 135-144.
19. Sheikh J., Juneja H., Ingle V., Ali P., and Hadda T.B. (2013) Synthesis and in vitro biology of Co(II), Ni(II), Cu(II) and Zn(II) complexes of functionalized beta-diketone bearing energy buried potential antibacterial and antiviral O,O Pharmacophore sites, J. Sau. Chem. Soc., 17, 269-276.
20. Wolf G.H. and Shimer M.T. (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochem. 26, 6392-6396.
21. Patil S.A., Naika V.H., Kulkarni A.D., and Badami P.S. (2010) DNA cleavage, antimicrobial, spectroscopic and fluorescence studies of Co(II), Ni(II) and Cu(II) complexes with SNO donor coumarin Schiff bases. Spectrochim. Acta A., 75, 347–354.
22. Shiju C., Arish D., and Kumaresan S. (2013) Homodinuclear lanthanide complexes of phenylthiopropionic acid: Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity. Spectro. Acta Part A: Mol. Biomol. Spectro., 105, 532-538.
23. Khoo T.J., Break M. K. B., Crouse, K.A., Tahir, M. I. M., Ali, A.M., Cowley, A.R., Watkin, D.J., and Tarafder, M.T.H. (2014) Synthesis, characterization and biological activity of two Schiff base ligand (2)s and their nickel(II), copper(II), zinc(II) and cadmium(II) complexes derived from S-4-picolyldithiocarbazate and X-ray crystal structure of cadmium(II) complex derived from pyridine-2-carboxaldehyde. Inorg. Chim. Acta., 413,68-76.
24. Pascaline N. F., Frankline K. K., Debra M., Ilia A. G., and James D. (2009) Tetra-chloro-(bis-(3,5-dimethylpyrazolyl)methane)gold(III) chloride: An HIV-1reverse transcriptase and protease inhibitor. J. Inorg. Biochem. 103, 190-194.
25. Yang S., Pannecouque C., Daelemans D., Ma X. D., Liu Y., Chen Fen-Er, and Clercq E. D. (2013). Molecular design, synthesis and biological evaluation of BP-O-DAPY and O-DAPY derivatives as non-nucleoside HIV-1 reverse transcriptase inhibitors. European J. Med. Chem., 65, 134-143.
26. Wang J., Liang H., Bacheler L., Wu H., Deriziotis K., Demeter L. M., and Dykes C. (2010). The non-nucleoside reverse transcriptase inhibitor efavirenz stimulates replication of human immunodeficiency virus type 1 harboring certain non-nucleoside resistance mutations. Viro., 402, 228-237.
27. Lautre H.K., Patil K., Youssouffi H., Hadda T.B., Bhatia V., and Pillai A.K. (2014) Synthesis and biological evaluation of purine nucleoside phosphorylase inhibitors from P. falciparum. World J Pharma Pharmaceut. Sci., 3, 1053-1068.
28. Lautre H.K., Pandey S., Patil K., and Pillai A.K. (2013) 3-amino-n-hydroxybenzamidine and their transition metal complexes: synthesis and evaluation as thymidylate kinase inhibitors of M.tuberculosis. Internat. J. Multidisci. Res., 2, 65-69.