How to cite this paper
Idrissi, K., Zeroual, A & Garmes, H. (2025). Molecular docking against Covid-19 and HIV, and the role of catalysis in stereoselective cycloaddition reactions: A theoretical investigation of TiCl4-promoted reactions between cyclopenta-1,3-diene and benzyl acrylate/benzyl 2-fluoroacrylate.Current Chemistry Letters, 14(2), 279-288.
Refrences
1. Lenci E., Menchi G., Saldívar-Gonzalez F. I., Medina-Franco J. L., and Trabocchi A. (2019) Bicyclic acetals: biological relevance, scaffold analysis, and applications in diversity-oriented synthesis. Org. Biomol. Chem., 17, 1037-1052. https://doi.org/10.1039/C8OB02808G
2. Phang Y., Wang X., Lu Y., Fu W., Zheng C., Xu H. (2020) Bicyclic polyprenylated acylphloroglucinols and their derivatives: structural modification, structure-activity relationship, biological activity and mechanism of action. Eur. J. Med. Chem., 205, 112646. https://doi.org/10.1016/j.ejmech.2020.112646
3. Wang H., Willershäuser M., Karlas A., Gorpas D., Reber J., Ntziachristos V., Maurer S., Fromme T., Li Y., Klingenspor M. (2019) A dual Ucp1 reporter mouse model for imaging and quantitation of brown and brite fat recruitment. Mol. Metab., 20, 14-27. https://doi.org/10.1016/j.molmet.2018.11.009
4. Kumar S., Sharma S., Chattopadhyay S. K. (2013) The potential health benefit of polyisoprenylated benzophenones from Garcinia and related genera: Ethnobotanical and therapeutic importance. Fitoterapia, 89, 86-125. https://doi.org/10.1016/j.fitote.2013.05.010
5. Hall D. G., Rybak T., Verdelet T. (2016) Multicomponent Hetero-[4 + 2] Cycloaddition/Allylboration Reaction: From Natural Product Synthesis to Drug Discovery. Acc. Chem. Res., 49 (11), 2489-2500. https://doi.org/10.1021/acs.accounts.6b00403
6. Ouled Abdelhak A., Barhoumi A., Zeroual A. (2023) A mechanism study and an investigation of the reason for the stereoselectivity in the [4+2] cycloaddition reaction between cyclopentadiene and gem-substituted ethylene electrophiles. Scientiae Radices, 2(3), 217-228. https://doi.org/10.58332/scirad2023v2i3a01
7. Mei H., Han J., Fustero S., Medio-Simon M., Sedgwick D. M., Santi C., Ruzziconi R., Soloshonok V. A. (2019) Fluorine-Containing Drugs Approved by the FDA in 2018. Chem. Eur. J., 25, 11797. https://doi.org/10.1002/chem.201901840
8. Wen L., Li B., Zou Z., Zhou N., Sun C., Feng P., Li H. (2024) Direct electrochemical difluorination and azo-fluorination of gem-difluorostyrenes. Org. Chem. Front., 11 (1), 142-148. https://doi.org/10.1039/D3QO00599B
9. Henary E., Casa S., Dost T. L., Sloop J. C., Henary M. (2024) The Role of Small Molecules Containing Fluorine Atoms in Medicine and Imaging Applications. Pharmaceuticals, 17 (3), 281. https://doi.org/10.3390/ph17030281
10. Wang L., Zhu X., Wang B., Wang Y., Wang M., Yang S., Su C., Chang J., Zhu B. (2024) Design, Synthesis, and Activity Evaluation of Fluorine-Containing Scopolamine Analogues as Potential Antidepressants. J. Med. Chem., 10.1021/acs.jmedchem.3c01970
11. Shabir G., Saeed A., Zahid W., Naseer F., Riaz Z., Khalil N., Muneeba, Albericio F. (2023) Chemistry and Pharmacology of Fluorinated Drugs Approved by the FDA (2016–2022). Pharmaceuticals, 16(8), 1162. https://doi.org/10.3390/ph16081162
12. D., Hellel, F., Chafaa, A. K. Nacereddine (2023) Synthesis of tetrahydroquinolines and quinoline derivatives through the Lewis acid catalysed Povarov reaction: A comparative study between multi step and multi-component methods. Scientiae Radices, 2(3), 295-308. https://doi.org/10.58332/scirad2023v2i3a05
13. Dresler E., Wróblewska A., Jasiński R. (2023) Understanding the Molecular Mechanism of Thermal and LA-Catalysed Diels–Alder Reactions between Cyclopentadiene and Isopropyl 3-Nitroprop-2-Enate. Molecules, 28, 5289. https://doi.org/10.3390/molecules28145289
14. Jasiński R. (2021) On the Question of Stepwise [4+2] Cycloaddition Reactions and Their Stereochemical Aspects. Symmetry, 13, 1911. https://doi.org/10.3390/sym13101911
15. Ameur S., Barhoumi A., Ríos-Gutiérrez M., Ouled Aitouna A., El Alaoui El Abdallaoui H., Mazoir N., Elalaoui Belghiti M., Syed A., Zeroual A., Domingo L. R. (2023) A MEDT study of the mechanism and selectivity of the hetero-Diels–Alder reaction between 3-benzoylpyrrolo[1,2-c][1,4]-benzoxazine-1,2,4-trione and vinyl acetate. Chem. Heterocycl. Compd., 59(3), 165-170.
16. Barhoumi A., Ourhriss N., Elalaoui Belghiti M., Chafi M., Syed A., Eswaramoorthy R., Verma M., Zeroual A., Zawadzińsk K., Jasiński R. (2023) 3-Difluormethyl-5-carbomethoxy-2,4-pyrazole: Molecular mechanism of the formation and molecular docking study. Curr. Chem. Lett., 12, 477-488. https://doi.org/10.5267/j.ccl.2023.3.008
17. Raji H., Ouled Aitouna A., Barhoumi A., Chekroun A., Zeroual A., Syed A., Elgorban A. M., Verma M., Benharref A., Varma R. S. (2023) Antiviral docking analysis, semisynthesis and mechanistic studies on the origin of stereo- and chemoselectivity in epoxidation reaction of α′-trans-Himachalene. J. Mol. Liq., 385, 122204. https://doi.org/10.1016/j.molliq.2023.122204
18. Barhoumi A., Ryachi K., Elalaoui Belghiti M., Chafi M., Tounsi A., Syed A., El Idrissi M., Wong L. S., Zeroual A. (2023) Chromatography Scrutiny, Molecular Docking, Clarifying the Selectivities and the Mechanism of [3+2] Cycloaddition Reaction between Linallol and Chlorobenzene-Nitrile-oxide. J. Fluoresc., https://doi.org/10.1007/s10895-023-03411-z
19. Domingo L. R., Ríos-Gutiérrez M., Pérez P. (2016) Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules, 21, 748. https://doi.org/10.3390/molecules21060748
20. Jasiński R. (2016) First example of stepwise, zwitterionic mechanism for bicyclo[2.2.1]hept-5-ene (norbornene) formation process catalyzed by the 1-butyl-3-methylimidazolium cations. Monatsh Chem., 147, 1207-1213. https://doi.org/10.1007/s00706-016-1735-5
21. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. (2009) Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT.
22. Deng L., Ziegler T. (1994) The determination of intrinsic reaction coordinates by density functional theory. Int. J. Quantum Chem., 52, 731-765. https://doi.org/10.1002/qua.560520406
23. Tomasi J., Cammi R., Mennucci B. (1999) Medium effects on the properties of chemical systems: An overview of recent formulations in the polarizable continuum model (PCM). Int. J. Quantum Chem., 75, 783-803. https://doi.org/10.1002/(SICI)1097-461X(1999)75:4/53.0.CO;2-G
24. Vogiatzis K. D., Polynski M. V., Kirkland J. K., Townsend J., Hashemi A., Liu C., Pidko E. A. (2019) Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chem. Rev., 119 (4), 2453-2523. https://doi.org/10.1021/acs.chemrev.8b00361
25. Ríos-Gutiérrez M., Saz Sousa A., Domingo L. R. (2023) Electrophilicity and nucleophilicity scales at different DFT computational levels. J. Phys. Org. Chem., 36(7), e4503. https://doi.org/10.1002/poc.4503
26. Domingo L. R., Pérez P., Sáez J. A. (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv., 3, 1486-1494. https://doi.org/10.1039/C2RA22886F