How to cite this paper
Ryachi, K., Barhoumi, A., Atifa, M., Eşme, A., Tounsi, A., idrissi, M & Zeroual, A. (2024). Molecular docking, elucidating the regiospecificity and the mechanism of [3+2] cycloloaddition reaction between azidobenzene and propiolaldehyde.Current Chemistry Letters, 13(2), 303-314.
Refrences
1. Kras J., Sadowski M., Zawadzińska K., Nagatsky R., Woliński P., Kula K., Łapczuk A. (2023) Thermal [3+2] cycloaddition reactions as most universal way for the effective preparation of five-membered nitrogen containing heterocycles, Scientiae Radices, 2, 247-267. DOI: 10.58332/scirad2023v2i3a03
2. James Crowley D., David McMorra A. (2012) Coordination Chemistry: Exploiting 1,4-Disubstituted-1,2,3-Triazoles as Ligands, 28, 31-87 DOI:10.1007/7081_2011_67
3. Lauria A., Delisi R., Mingoia F., Terenzi A., Martorana A., Barone G., Almerico A.M., (2014) 1,2,3-Triazole in Heterocyclic Compounds, Endowed with Biological Activity, through 1,3-Dipolar Cycloadditions, Eur. J. Org. Chem 3289-3306 DOI: 10.1002/ejoc.201301695
4. Kawai H., Shibata N. (2014) Asymmetric Synthesis of Trifluoromethylated Dihydroazoles, The Chemical Record. 14, 1024-1040 DOI:10.1002/tcr.201402023
5. Zhu J., Jun M., Hong-zhi L., Chen Y., Hao-peng S. (2018) The recent progress of isoxazole in medicinal chemistry, Bioorganic and Medicinal Chemistry. 26(12), 3065-3075 DOI: 10.1016/j.bmc.2018.05.013.
6. Dadiboyena S., Jianping X., Ashton Hamme T. (2006) Isoxazoles, Electronics Properties, Annals of the New York Academy of Sciences. 1006, 235-251 DOI:10.1196/annals.1292.017
7. Domingo LR. (2016) Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry, Molecules. 21, 1319 DOI:10.3390/molecules21101319
8. El idrissi M., El Ghozlani M., Eşme A., Ríos-Gutiérrez M., Ouled Aitouna A., Salah M., El Abdallaoui H. E., Zeroual A., Mazoir N., Domingo LR. (2021) Mpro-SARS-CoV-2 Inhibitors and Various Chemical Reactivity of 1-Bromo- and 1-Chloro-4-vinylbenzene in [3 + 2] Cycloaddition Reactions, Organics, 2(1), 1-16 DOI:10.3390/org2010001
9. Zeroual A., Ríos-Gutiérrez M., M. El idrissi., Ouled Aitouna A., Salah M., El Abdallaoui H.E., Domingo LR. (2020) A molecular electron density theory investigation of the molecular mechanism, regioselectivity, stereoselectivity and chemoselectivity of cycloaddition reaction between acetonitrile N-oxide and 2,5-dimethyl-2H-[1,2,3]diazarsole, Theor Chem Acc 139 37 DOI:10.1007/s00214-020-2547-6
10. Zeroual A., Ríos-Gutiérrez M., Salah M., El Abdallaoui H.E., Domingo LR. (2019) An investigation of the molecular mechanism, chemoselectivity and regioselectivity of cycloaddition reaction between acetonitrile N-Oxide and 2,5-dimethyl-2H-[1,2,3]diazaphosphole: a MEDT study, J Chem Sci. 131, 75 DOI:10.1007/s12039-019-1656-z
11. Fryźlewicz A., Kącka-Zych A., Demchuk O. M., Mirosław B., Woliński P., Jasiński R., (2021) Green synthesis of nitrocyclopropane-type precursors of inhibitors for the maturation of fruits and vegetables via domino reactions of diazoalkanes with 2-nitroprop-1-ene, Journal of Cleaner Production, Volume 292, , 126079, https://doi.org/10.1016/j.jclepro.2021.126079.
12. Jasiński R., (2015) A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations, Tetrahedron Letters, Volume 56, Issue 3, 532-535, https://doi.org/10.1016/j.tetlet.2014.12.007.
13. Jasiński R., (2018) Competition between one-step and two-step mechanism in polar [3 + 2] cycloadditions of (Z)-C-(3,4,5-trimethoxyphenyl)-N-methyl-nitrone with (Z)-2-EWG-1-bromo-1-nitroethenes, Computational and Theoretical Chemistry, Volume 1125, 77-85, https://doi.org/10.1016/j.comptc.2018.01.009.
14. Zeroual A., Benharref A., El Hajbi A. (2015) Theoretical study of stereoselectivity of the [1+2] cycloaddition reaction between (1S,3R,8S)-2,2-dichloro-3,7,7,10-tetramethyltricyclo[6,4,0,01.3]dodec-9-ene and dibromocarbene using density functional theory (DFT). J. Mol Model. 21, 44 DOI:10.1007/s00894-015-2594-4
15. Barhoumi A., El idrissi M., Zeroual A. (2021) Theoretical study of the chemical reactivity of a class of trivalent phosphorus derivatives towards polyhaloalkanes: DFT study, J Mol Model. 27, 197 DOI:10.1007/s00894-021-04814-0
16. Barhoumi A., Ouled Aitouna A., Zeroual A., El idrissi M. (2020) Mechanistic Study of Hetero-Diels–Alder [4 + 2] Cycloaddition Reactions Between 2-Nitro-1H-Pyrrole and Isoprene, Chemistry Africa. 3, 901-909 DOI:10.1007/s42250-020-00187-8
17. Ameur S., Barhoumi A., Ríos-Gutiérrez M., Ouled Aitouna A., El Alaoui E.H., Mazoir N., Syed A., Zeroual A., Domingo L.R. (2023) A MEDT study of the mechanism and selectivity of the hetero-Diels–Alder reaction between 3-benzoylpyrrolo[1,2-c][1,4]-benzoxazine-1,2,4-trione and vinyl acetate, Chem. Heterocycl. Compd. 59(3), 165–170.
18. Zeroual A., Ríos-Gutiérrez M., El idrissi M., Domingo L.R. (2019) An MEDT Study of the Mechanism, Chemo- and Stereoselectivity of the Epoxidation Reaction of R-carvone with Peracetic Acid, RSC Advances Royal Society of Chemistry. 9, 28500-28509.
19. Zeroual A., M. Ríos-Gutiérrez, M. El idrissi, E.H. El Alaoui, L.R, Domingo, An MEDT study of the mechanism and selectivities of the [3+2] cycloaddition reaction of tomentosin with benzonitrile oxide, International Journal of Quantum Chemistry (2019) 1–9.
20. Aitouna A.O., Mazoir N., Zeroual A., Syed A., Bahkali Ali H., Elgorban A. M., Verma M., El idrissi M., · Jasiński R. (2023) Molecular docking, expounding the regiospecificity, stereoselectivity, and the mechanism of [5+2] cycloaddition reaction between ethereal ether and oxidopyrylium. J. Structural Chemistry. DOI:10.1007/s11224-023-02239-4
21. Smail T., Shafi S., Hyder I., Sidiq T., Khajuria A., Alam S.M., Halmuthur M.S.K. (2015) Design and Synthesis of Novel 1,2,3-Triazole- and 2-Isoxazoline-Based Bis-Heterocycles as Immune Potentiators, Arch. Pharm, Chem. Life Sci, 348, 796-807. DOI:10.1002/ardp.201400398.
22. McLean A.D., Chandler G.S. (1980) Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18, J Chem Phys. 72, 5639-48 DOI:10.1063/1.438980
23. Krishnan R., Binkley J.S., Seeger R., (1980) Pople J.A. Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions, J Chem Phys. 72, 650-54. DOI:10.1063/1.438955
24. Gaussian 09, Revision A.02, M. J. Frisch et all, Gaussian, Inc., Wallingford CT, (2009).
25. Schlegel H.B. (1982) Optimization of equilibrium geometries and transition structures, J Comput Chem. 2 214-218. DOI:10.1002/wcms.34.
26. Schlegel H.B., Yarkony D.R. (1994) Modern Electronic Structure Theory, World Scientific Publishing, Singapore.
27. Tomasi J., Persico M. (1994) Molecular interactions in solution: an overview of Methods Based on continuous distributions of the solvent, Chem Rev. 94, 2027-2094 DOI:10.1021/cr00031a013
28. Cossi M., Barone V., Cammi R., Tomasi J. (1996) Ab initio study of solvated molecules: anew implementation of the polarizable continuum model, Chem Phys Lett. 255, 327-327 DOI:10.1016/0009-2614(96)00349-1.
29. Mennucci B., Cancès E., Tomasi J. (1997) Evaluation of solvent effects in isotropic and Anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications, J. Chem. Phys. 101, 10506-10517 DOI:10.1021/jp971959k
30. Barone V., Cossi M., Tomasi J. (1998) Geometry optimization of molecular structures insolution by the polarizable continuum model, J. Comput. Chem. 19 404-417.
31. Parr RG., Szentpaly LV., Liu S. (1999) Electrophilicity Index, J. Am. Chem. Soc. 121, 1922-1924 DOI:10.1021/ja983494x
32. Domingo LR., Pérez P. (2011) The nucleophilicity N index in organic chemistry. Org. Biomol. Chem. 9, 7168-7175 DOI:10.1039/C1OB05856H
33. Domingo LR., Perez P., Séaez JA. (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions, RSC Adv. 3, 1486-1494. DOI:10.1039/C2RA22886F
34. Barhoumi A., Ourhriss N., Belghiti M. E., Chafi M., Syed A., laksh-manan Eswaramoorthy R., Verma M., Zeroual A., Zawadzińska K., Jasiński R. (2023) 3-Difluormethyl-5-carbomethoxy-2,4-pyrazole: Molecular mechanism of the formation and molecular docking study, Current Chemistry Letters. 12, 477–48 DOI:10.5267/j.ccl.2023.3.008.
35. Becke AD., Edgecombe KE. (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92 5397-5403. DOI:10.1063/1.458517
36. Noury S., Krokidis X., Fuster F., Silvi B. (1999) Computational tools for the electron localizationfunction topological analysis, Comput Chem. 23, 597-604. DOI:10.1016/S0097-8485(99)00039-X.
37. Parr R.G., Yang W. (1989) Density-functional theory of atoms and molecules, Oxford University Press, New York.
38. Parr RG., Szentpály L.V., Liu S. (1999) Electrophilicity Index. J Am Chem Soc 121 1922-1924. DOI:10.1021/ja983494x
39. Domingo L.R., Aurell M J., Pérez P., Contreras R. (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron, 58 4417-4423. DOI:10.1016/S0040-4020(02)00410-6
40. Ríos-Gutiérrez M., Saz Sousa A., L.R. Domingo, (2023) Electrophilicity and nucleophilicity scales at different DFT computational levels. J Phys Org Chem. 36(7), e4503. DOI:10.1002/poc.4503.
41. Domingo L.R., Pérez P., Sáez J.A. (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr function, RSC Advances. 3, 1486-1494. DOI:10.1039/C2RA22886F
42. Domingo L. R., Ríos-Gutiérrez M. (2023) A Useful Classification of Organic Reactions Based on the Flux of the Electron Density, Scientiae Radices, 2, 1-24, DOI: 10.58332/scirad2023v2i1a01
43. Zawadzińska K., Gostyński B. (2023) Nitrosubstituted analogs of isoxazolines and isoxazolidines: a surprising estimation of their biological activity via molecular docking. Scientiae Radices, 2, 25-46. DOI: 10.58332/scirad2023v2i1a02
2. James Crowley D., David McMorra A. (2012) Coordination Chemistry: Exploiting 1,4-Disubstituted-1,2,3-Triazoles as Ligands, 28, 31-87 DOI:10.1007/7081_2011_67
3. Lauria A., Delisi R., Mingoia F., Terenzi A., Martorana A., Barone G., Almerico A.M., (2014) 1,2,3-Triazole in Heterocyclic Compounds, Endowed with Biological Activity, through 1,3-Dipolar Cycloadditions, Eur. J. Org. Chem 3289-3306 DOI: 10.1002/ejoc.201301695
4. Kawai H., Shibata N. (2014) Asymmetric Synthesis of Trifluoromethylated Dihydroazoles, The Chemical Record. 14, 1024-1040 DOI:10.1002/tcr.201402023
5. Zhu J., Jun M., Hong-zhi L., Chen Y., Hao-peng S. (2018) The recent progress of isoxazole in medicinal chemistry, Bioorganic and Medicinal Chemistry. 26(12), 3065-3075 DOI: 10.1016/j.bmc.2018.05.013.
6. Dadiboyena S., Jianping X., Ashton Hamme T. (2006) Isoxazoles, Electronics Properties, Annals of the New York Academy of Sciences. 1006, 235-251 DOI:10.1196/annals.1292.017
7. Domingo LR. (2016) Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry, Molecules. 21, 1319 DOI:10.3390/molecules21101319
8. El idrissi M., El Ghozlani M., Eşme A., Ríos-Gutiérrez M., Ouled Aitouna A., Salah M., El Abdallaoui H. E., Zeroual A., Mazoir N., Domingo LR. (2021) Mpro-SARS-CoV-2 Inhibitors and Various Chemical Reactivity of 1-Bromo- and 1-Chloro-4-vinylbenzene in [3 + 2] Cycloaddition Reactions, Organics, 2(1), 1-16 DOI:10.3390/org2010001
9. Zeroual A., Ríos-Gutiérrez M., M. El idrissi., Ouled Aitouna A., Salah M., El Abdallaoui H.E., Domingo LR. (2020) A molecular electron density theory investigation of the molecular mechanism, regioselectivity, stereoselectivity and chemoselectivity of cycloaddition reaction between acetonitrile N-oxide and 2,5-dimethyl-2H-[1,2,3]diazarsole, Theor Chem Acc 139 37 DOI:10.1007/s00214-020-2547-6
10. Zeroual A., Ríos-Gutiérrez M., Salah M., El Abdallaoui H.E., Domingo LR. (2019) An investigation of the molecular mechanism, chemoselectivity and regioselectivity of cycloaddition reaction between acetonitrile N-Oxide and 2,5-dimethyl-2H-[1,2,3]diazaphosphole: a MEDT study, J Chem Sci. 131, 75 DOI:10.1007/s12039-019-1656-z
11. Fryźlewicz A., Kącka-Zych A., Demchuk O. M., Mirosław B., Woliński P., Jasiński R., (2021) Green synthesis of nitrocyclopropane-type precursors of inhibitors for the maturation of fruits and vegetables via domino reactions of diazoalkanes with 2-nitroprop-1-ene, Journal of Cleaner Production, Volume 292, , 126079, https://doi.org/10.1016/j.jclepro.2021.126079.
12. Jasiński R., (2015) A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations, Tetrahedron Letters, Volume 56, Issue 3, 532-535, https://doi.org/10.1016/j.tetlet.2014.12.007.
13. Jasiński R., (2018) Competition between one-step and two-step mechanism in polar [3 + 2] cycloadditions of (Z)-C-(3,4,5-trimethoxyphenyl)-N-methyl-nitrone with (Z)-2-EWG-1-bromo-1-nitroethenes, Computational and Theoretical Chemistry, Volume 1125, 77-85, https://doi.org/10.1016/j.comptc.2018.01.009.
14. Zeroual A., Benharref A., El Hajbi A. (2015) Theoretical study of stereoselectivity of the [1+2] cycloaddition reaction between (1S,3R,8S)-2,2-dichloro-3,7,7,10-tetramethyltricyclo[6,4,0,01.3]dodec-9-ene and dibromocarbene using density functional theory (DFT). J. Mol Model. 21, 44 DOI:10.1007/s00894-015-2594-4
15. Barhoumi A., El idrissi M., Zeroual A. (2021) Theoretical study of the chemical reactivity of a class of trivalent phosphorus derivatives towards polyhaloalkanes: DFT study, J Mol Model. 27, 197 DOI:10.1007/s00894-021-04814-0
16. Barhoumi A., Ouled Aitouna A., Zeroual A., El idrissi M. (2020) Mechanistic Study of Hetero-Diels–Alder [4 + 2] Cycloaddition Reactions Between 2-Nitro-1H-Pyrrole and Isoprene, Chemistry Africa. 3, 901-909 DOI:10.1007/s42250-020-00187-8
17. Ameur S., Barhoumi A., Ríos-Gutiérrez M., Ouled Aitouna A., El Alaoui E.H., Mazoir N., Syed A., Zeroual A., Domingo L.R. (2023) A MEDT study of the mechanism and selectivity of the hetero-Diels–Alder reaction between 3-benzoylpyrrolo[1,2-c][1,4]-benzoxazine-1,2,4-trione and vinyl acetate, Chem. Heterocycl. Compd. 59(3), 165–170.
18. Zeroual A., Ríos-Gutiérrez M., El idrissi M., Domingo L.R. (2019) An MEDT Study of the Mechanism, Chemo- and Stereoselectivity of the Epoxidation Reaction of R-carvone with Peracetic Acid, RSC Advances Royal Society of Chemistry. 9, 28500-28509.
19. Zeroual A., M. Ríos-Gutiérrez, M. El idrissi, E.H. El Alaoui, L.R, Domingo, An MEDT study of the mechanism and selectivities of the [3+2] cycloaddition reaction of tomentosin with benzonitrile oxide, International Journal of Quantum Chemistry (2019) 1–9.
20. Aitouna A.O., Mazoir N., Zeroual A., Syed A., Bahkali Ali H., Elgorban A. M., Verma M., El idrissi M., · Jasiński R. (2023) Molecular docking, expounding the regiospecificity, stereoselectivity, and the mechanism of [5+2] cycloaddition reaction between ethereal ether and oxidopyrylium. J. Structural Chemistry. DOI:10.1007/s11224-023-02239-4
21. Smail T., Shafi S., Hyder I., Sidiq T., Khajuria A., Alam S.M., Halmuthur M.S.K. (2015) Design and Synthesis of Novel 1,2,3-Triazole- and 2-Isoxazoline-Based Bis-Heterocycles as Immune Potentiators, Arch. Pharm, Chem. Life Sci, 348, 796-807. DOI:10.1002/ardp.201400398.
22. McLean A.D., Chandler G.S. (1980) Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18, J Chem Phys. 72, 5639-48 DOI:10.1063/1.438980
23. Krishnan R., Binkley J.S., Seeger R., (1980) Pople J.A. Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions, J Chem Phys. 72, 650-54. DOI:10.1063/1.438955
24. Gaussian 09, Revision A.02, M. J. Frisch et all, Gaussian, Inc., Wallingford CT, (2009).
25. Schlegel H.B. (1982) Optimization of equilibrium geometries and transition structures, J Comput Chem. 2 214-218. DOI:10.1002/wcms.34.
26. Schlegel H.B., Yarkony D.R. (1994) Modern Electronic Structure Theory, World Scientific Publishing, Singapore.
27. Tomasi J., Persico M. (1994) Molecular interactions in solution: an overview of Methods Based on continuous distributions of the solvent, Chem Rev. 94, 2027-2094 DOI:10.1021/cr00031a013
28. Cossi M., Barone V., Cammi R., Tomasi J. (1996) Ab initio study of solvated molecules: anew implementation of the polarizable continuum model, Chem Phys Lett. 255, 327-327 DOI:10.1016/0009-2614(96)00349-1.
29. Mennucci B., Cancès E., Tomasi J. (1997) Evaluation of solvent effects in isotropic and Anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications, J. Chem. Phys. 101, 10506-10517 DOI:10.1021/jp971959k
30. Barone V., Cossi M., Tomasi J. (1998) Geometry optimization of molecular structures insolution by the polarizable continuum model, J. Comput. Chem. 19 404-417.
31. Parr RG., Szentpaly LV., Liu S. (1999) Electrophilicity Index, J. Am. Chem. Soc. 121, 1922-1924 DOI:10.1021/ja983494x
32. Domingo LR., Pérez P. (2011) The nucleophilicity N index in organic chemistry. Org. Biomol. Chem. 9, 7168-7175 DOI:10.1039/C1OB05856H
33. Domingo LR., Perez P., Séaez JA. (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions, RSC Adv. 3, 1486-1494. DOI:10.1039/C2RA22886F
34. Barhoumi A., Ourhriss N., Belghiti M. E., Chafi M., Syed A., laksh-manan Eswaramoorthy R., Verma M., Zeroual A., Zawadzińska K., Jasiński R. (2023) 3-Difluormethyl-5-carbomethoxy-2,4-pyrazole: Molecular mechanism of the formation and molecular docking study, Current Chemistry Letters. 12, 477–48 DOI:10.5267/j.ccl.2023.3.008.
35. Becke AD., Edgecombe KE. (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92 5397-5403. DOI:10.1063/1.458517
36. Noury S., Krokidis X., Fuster F., Silvi B. (1999) Computational tools for the electron localizationfunction topological analysis, Comput Chem. 23, 597-604. DOI:10.1016/S0097-8485(99)00039-X.
37. Parr R.G., Yang W. (1989) Density-functional theory of atoms and molecules, Oxford University Press, New York.
38. Parr RG., Szentpály L.V., Liu S. (1999) Electrophilicity Index. J Am Chem Soc 121 1922-1924. DOI:10.1021/ja983494x
39. Domingo L.R., Aurell M J., Pérez P., Contreras R. (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron, 58 4417-4423. DOI:10.1016/S0040-4020(02)00410-6
40. Ríos-Gutiérrez M., Saz Sousa A., L.R. Domingo, (2023) Electrophilicity and nucleophilicity scales at different DFT computational levels. J Phys Org Chem. 36(7), e4503. DOI:10.1002/poc.4503.
41. Domingo L.R., Pérez P., Sáez J.A. (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr function, RSC Advances. 3, 1486-1494. DOI:10.1039/C2RA22886F
42. Domingo L. R., Ríos-Gutiérrez M. (2023) A Useful Classification of Organic Reactions Based on the Flux of the Electron Density, Scientiae Radices, 2, 1-24, DOI: 10.58332/scirad2023v2i1a01
43. Zawadzińska K., Gostyński B. (2023) Nitrosubstituted analogs of isoxazolines and isoxazolidines: a surprising estimation of their biological activity via molecular docking. Scientiae Radices, 2, 25-46. DOI: 10.58332/scirad2023v2i1a02