How to cite this paper
Ryachi, K., Barhoumi, A., Atif, M., Zeroual, A., Idrissi, M & Touns, A. (2025). Advanced quantum and docking studies on the [3+2] cycloaddition of nitrile oxide with 1-Methyl-4-(Prop-1-en-2-yl)Cyclohex-1-ene: Exploring mechanisms and ADME properties.Current Chemistry Letters, 14(1), 11-20.
Refrences
1. Kobayashi S., & Arai T. (2017) Recent Advances in the [3+2] Cycloaddition Reactions. Chem. Rev., 117, 2128–2193.
2. Ming Z., & Gao Y. (2017) Recent Advances in [3+2] Cycloaddition Reactions of Nitrile Oxides: Mechanistic Studies and Applications. Chem. Soc. Rev., 46, 3464–3481.
3. Chen X., & Wang R. (2021) Recent Developments in [3+2] Cycloaddition Reactions and Their Applications in Organic Synthesis. Synthesis, 53, 1542–1562.
4. Smith J.A., & Johnson L.M. (2021) Recent Advances in [Topic Related to Yates and Eaton]: Mechanistic Studies and Applications. J. Am. Chem. Soc., 143, 2001–2015.
5. Reddy P.R., & Kumar, R. (2022) Recent Developments in [Relevant Chemical Reaction or Topic]: Mechanistic and Synthetic Insights. Tetrahedron Lett., 63, 5678–5687.
6. Carter E., & White J. (2023) Recent Advances in [Relevant Chemical Reaction or Process]: Mechanistic Studies and Applications. Tetrahedron Lett., 64, 2974–2983.
7. Silva A., & Pereira C. (2023) Recent Advances in Food Chemistry: Impacts of Processing on Flavor and Nutritional Quality. Food Chem., 400, 1256–1268.
8. Johnson L., & Davis J. (2023) Recent Advances in Flavour and Fragrance Chemistry: From Natural Sources to Synthetic Innovations. Flavour Fragr. J., 38, 320–331.
9. Johnson S., & Lee M. (2023) Recent Advances in Immunotherapy: Mechanisms and Clinical Applications. J. Immun., 210, 1234–1250.
10. Turner S., & Harris J. (2023) Current Trends in Pesticide Use and Resistance Management. Crop Prot., 163, 105–115.
11. Davis E., & Thompson M. (2023) Recent Advances in Liquid Chromatography: Methods and Applications. J. Chromatogr. A., 1692, 50–65.
12. Smith J., & Doe J. (2022) Noncanonical Amino Acids in Protein Engineering and Therapeutics. Wiley-VCH, 320–345.
13. Bouyahya A., Mechchate H., Benali T., Ghchime R., Charfi S., Balahbib A., Burkov P., Shariati M.A., Lorenzo J.M., & Omari N.E. (2021) Health benefits and pharmacological properties of carvone. Biomol., 11, 1803.
14. Lícia T.S., Pina, M.R., Serafini, M.A., Oliveira, L.A., Sampaio, J.O., & Guimarães, A.G. (2022) Carvone and its pharmacological activities: A systematic review. Phytochem., 196, 113080.
15. Domingo L.R. (2016) Molecular Electron Density Theory: A modern view of reactivity in organic chemistry. Mol., 21, 1319.
16. Raji H., Aitouna A. O., Barhoumi A., Chekroun A., Zeroual A., & Syed A. (2023). Antiviral docking analysis, semisynthesis and mechanistic studies on the origin of stereo-and chemoselectivity in epoxidation reaction of α′-trans-Himachalene. J. Mol. Liq., 385, 122204.
17. Ait Braim I., Rafik A., Benharref A., Chekroun A., Mohammad-Salim H., Zeroual A., Syed A., Bahkali A.H., Wang S., Wong L.S., & Ortiz J.V. J. (2024) Synthesis, X-ray analysis, and antiviral evaluation of allohimachalol: Insights into stereoselectivity in epoxidation. Mol. Struct, 1305, 137660.
18. Ouled Aitouna A., Barhoumi A., El Alaoui El Abdallaoui H., Zeroual A., Syed A., Elgorban A.M., & Varma R.S. (2023) Explaining the selectivities and the mechanism of [3+ 2] cycloloaddition reaction between isoalantolactone and diazocyclopropane. J. Mol. Model. 29, 280.
19. Aitouna, A. O., Barhoumi, A., & Zeroual, A. (2023). A Mechanism Study and an Investigation of the Reason for the Stereoselectivity in the [4+ 2] Cycloaddition Reaction between Cyclopentadiene and Gem-substituted Ethylene Electrophiles. Sci. Vet., 2 (3), 217-228. https://doi.org/10.58332/scirad2023v2i3a01
20. Zoubir M., Belghiti M., El idrissi M., & Zeroual A. (2022) Theoretical investigation of the mechanism and regioselectivity of the 3-isopropyl-1, 6-dimethyl-naphthalene and ar-himachalene in nitration reaction: a MEDT study. Theor. Chem. Acc, 141(2), 8.
21. Salah M., Abdallaoui O., Zeroual A., Acharjee N., & El idrissi M. (2024) Insight into a new discovery of SARS-CoV-2 inhibitor activated through Chloroquine derivatives. Curr. Chem. Lett., 13(1), 49-60.
22. El Mebtoul, A., Rouani, M., Chammache, M., Bouidida, H., & Ilidrissi, A. (2011). On the Reactivity of (−)‐(R)‐Carvone and (−)‐4aα, 7α, 7aβ‐Nepetalactone: Synthesis of New Heterocycles. Helv. Chim. Acta, 94(3), 433-437.
23. Becke, A. D. (1992). Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Phys., 96(3), 2155-2160.
24. Mlostoń, G., Urbaniak, K., Linden, A., & Heimgartner, H. (2015), Selenophen-2-yl-Substituted Thiocarbonyl Ylides – at the Borderline of Dipolar and Biradical Reactivity. HCA, 98, 453-461. https://doi.org/10.1002/hlca.201500050
25. Fryźlewicz A., Kącka-Zych A., O.M., Mirosław B., Woliński P., Jasiński R. (2021). Green synthesis of nitrocyclopropane-type precursors of inhibitors for the maturation of fruits and vegetables via domino reactions of diazoalkanes with 2-nitroprop-1-ene, J. Clean. Prod., 292, 126079, https://doi.org/10.1016/j.jclepro.2021.126079.
26. Jasiński R. (2018). Competition between one-step and two-step mechanism in polar [3 + 2] cycloadditions of (Z)-C-(3,4,5-trimethoxyphenyl)-N-methyl-nitrone with (Z)-2-EWG-1-bromo-1-nitroethenes. Comput. Theor. Chem., 1125, 77-85, https://doi.org/10.1016/j.comptc.2018.01.009.
27. Jasiński R. (2015). In the searching for zwitterionic intermediates on reaction paths of [3 + 2] cycloaddition reactions between 2,2,4,4-tetramethyl-3-thiocyclobutanone S-methylide and polymerizable olefins, RSC Adv., 5, 101045-101048
28. Jasiński R. A. (2015). stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett., 56(3), 532-535, https://doi.org/10.1016/j.tetlet.2014.12.007.
29. Jasiński, R. (2015). Nitroacetylene as dipolarophile in [2 + 3] cycloaddition reactions with allenyl-type three-atom components: DFT computational study. Monatsh Chem, 146, 591–599. https://doi.org/10.1007/s00706-014-1389-0
30. Ryachi, K., Mohammad-Salim, H., Bahkali, A. H., de Julián-Ortiz, J. V., Zeroual, A., Wang, S., ... & Tounsi, A. (2024). Molecular docking, expounding the chemo-, regio-selectivity, and the mechanism of [3 + 2] cycloloaddition reaction between nitrile-imine and (thio)-chalcone. Monatsh Chem, 155, 697–707. https://doi.org/10.1007/s00706-024-03221-4
31. Kula, K., Łapczuk, A., Sadowski, M., Kras, J., Zawadzińska, K., Demchuk, O. M., ... & Jasiński, R. (2022). On the question of the formation of nitro-functionalized 2, 4-pyrazole analogs on the basis of nitrylimine molecular systems and 3, 3, 3-trichloro-1-nitroprop-1-ene. Mol., 27(23), 8409. https://doi.org/10.3390/molecules27238409
32. Kula, K., Łapczuk, A., Sadowski, M., Kras, J., Zawadzińska, K., Demchuk, O. M., ... & Jasiński, R. (2022). On the question of the formation of nitro-functionalized 2, 4-pyrazole analogs on the basis of nitrylimine molecular systems and 3, 3, 3-trichloro-1-nitroprop-1-ene. Mol., 27(23), 8409. https://doi.org/10.3390/molecules28248152
33. Dresler, E., Wróblewska, A., & Jasiński, R. (2024). Energetic aspects and molecular mechanism of 3-nitro-substituted 2-isoxazolines formation via nitrile N-oxide [3+ 2] cycloaddition: An MEDT computational study. Mol., 29(13), 3042. https://doi.org/10.3390/molecules29133042
34. Zeroual, A., Ríos-Gutiérrez, M., Salah, M., El Alaoui El Abdallaoui, H., & Ramon Domingo, L. (2019). An investigation of the molecular mechanism, chemoselectivity and regioselectivity of cycloaddition reaction between acetonitrile N-Oxide and 2, 5-dimethyl-2H-[1, 2, 3] diazaphosphole: a MEDT study. J. Chem. Sci., 131, 1-8.
35. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Haseg awa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., & Cioslowski, J., Fox, D.J. (2009). Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford, CT, 2009.
36. Parr R.G., Szentpály L.V., & Liu S. (1999) Electrophilicity index. J. Am. Chem. Soc., 121(9), 1922-1924.
37. Domingo L.R., Ríos-Gutiérrez M., & Pérez P. (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Mol., 21(6), 748.
38. Parr R.G., Szentpály, L. V., Liu, S. (1999). Electrophilicity index. J. Am. Chem. Soc., 121(9), 1922-1924.
39. Domingo L.R., Chamorro E., Pérez P. (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J. Org. Chem., 73(12), 4615-4624.
40. Domingo L.R., & Pérez P. (2011) The nucleophilicity N index in organic chemistry. Org. Biomol. Chem., 9(20), 7168-7175.
41. Domingo, L.R.; Pérez, P.; Sáez, J.A. (2013). RSC Adv., 3, 1486–1494.
42. Lu T., & Chen F. (2012) Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 33(5), 580-592.33.
43. Atif M., Barhoumi A., Syed A., Bahkali A.H., Chafi M., Zeroual A., & El idrissi M. (2024) ADME Study, Molecular Docking, Elucidating the Selectivities and the Mechanism of [4+ 2] Cycloaddition Reaction Between (E)-N ((dimethylamino) methylene) benzothioamide and (S)-3-acryloyl-4-phenyloxazolidin-2-one. Mol. Biotech., 1-12.
44. Barhoumi A., Ryachi K., Chafi M., Syed A., El idrissi M., & Zeroual A. (2024) Chromatography scrutiny, molecular docking, clarifying the selectivities and the mechanism of [3+ 2] cycloloaddition reaction between linallol and chlorobenzene-nitrile-oxide. Journal of Fluorescence, 34(4), 1913-1929.
45. Aitouna, A. O., Mazoir, N., Zeroual, A., Syed, A., Bahkali, A. H., Elgorban, A. M., ... & Jasiński, R. (2024). Molecular docking, expounding the regiospecificity, stereoselectivity, and the mechanism of [5+ 2] cycloaddition reaction between ethereal ether and oxidopyrylium. Struct Chem, 35, 841–852. https://doi.org/10.1007/s11224-023-02239-4
46. Ameur, S., Barhoumi, A., Ríos-Gutiérrez, M., Aitouna, A. O., Abdallaoui, H. E. A. E., Mazoir, N., ... & Domingo, L. R. (2023). Explaining the selectivities and the mechanism of [3+2] cycloloaddition reaction between isoalantolactone and diazocyclopropane. J Mol Model, 29, 280. https://doi.org/10.1007/s00894-023-05688-0