How to cite this paper
Severin, O., Pilyo, S., Semenyuta, I., Kachaeva, M., Zhirnov, V & Brovaret, V. (2025). Design, synthesis and anticancer activity of novel 4-(5-amino-4-cyano-1,3-oxazol-2-yl)benzenesulfonamide derivatives.Current Chemistry Letters, 14(1), 159-172.
Refrences
1 Bukowski K., Kciuk M., and Kontek, R. (2020) Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci., 21 (9), 3233.
2 Dobrydnev A.V., Tkachuk T.M., Atamaniuk V.P., and Popova M.V. (2020) Quercetin-amino acid conjugates are promising anti-cancer agents in drug discovery projects. Mini rev. Med. Chem., 20 (2), 107–122.
3 Ballatore C., Huryn D. M., and Smith A. B. (2013) Carboxylic acid (bio)isosteres in drug design. ChemMedChem, 8 (3), 385–395.
4 Dobrydnev A. V., Vashchenko B. V., and Volovenko Y. M. (2018) The simplest synthesis of 5, 5-disubstituted and spiranic methyl 4-amino-2, 2-dioxo-2, 5-dihydro-1, 2λ6-oxathiole-3-carboxylates. Tetrahedron let., 59(16), 1581-1582.
5 Wani T. A., Zargar S., Alkahtani H. M., Altwaijry N., and Al-Rasheed L. S. (2023) Anticancer Potential of Sulfonamide Moieties via In-Vitro and In-Silico Approaches: Comparative Investigations for Future Drug Development. Int. J. mol. Sci., 24(9), 7953.
6 Popov I. O., Popova M. V., Omelian, T. V., Dobrydnev A. V., Konovalova, I. S., Shishkina, S. V., Grygorenko O. O., and Volovenko Yu. M. (2021) Reaction of dialkylaminosulfur trifluorides with β-keto sulfonamides and β-keto sulfones. ChemistrySelect, 6, 3084–3088.
7 Cassileth P. A., and Gale R. P. (1986) Amsacrine: a review. Leuk. Res., 10(11), 1257–1265.
8 Poole R.M. (2014) Belinostat: First Global Approval. Drugs, 74, 1543–1554.
9 Ballantyne A. D., and Garnock-Jones K. P. (2013) Dabrafenib: first global approval. Drugs, 73(12), 1367–1376.
10 Lemjabbar-Alaoui H., Hassan O. U., Yang Y. W., and Buchanan P. (2015) Lung cancer: Biology and treatment options. Biochim. Biophys. Acta, 1856(2), 189–210.
11 Shen H., Yuan Y., Sun J., Gao W., and Shu Y. Q. (2010) Combined tamoxifen and gefitinib in non-small cell lung cancer shows antiproliferative effects. Biomed. Pharmacother., 64(2), 88–92.
12 Shao X., Liu Y., Li Y., Xian M., Zhou Q., Yang B., Ying M., and He Q. (2016) The HER2 inhibitor TAK165 Sensitizes Human Acute Myeloid Leukemia Cells to Retinoic Acid-Induced Myeloid Differentiation by activating MEK/ERK mediated RARα/STAT1 axis. Sci Rep., 6, 24589.
13 Kachaeva M. V., Pilyo S. G., Demydchuk B. A., Prokopenko V. M., Zhirnov V. V., and Brovarets V. S. (2018) 4-Cyano-1, 3-oxazole-5-sulfonamides as novel promising anticancer lead compounds. Int. J. Curr. Res., 10, 69410-69425.
14 Hogan P. J., and Cox B. G. (2009) Aqueous process chemistry: the preparation of aryl sulfonyl chlorides. Org. Proc. Res. Dev. 13, 875–879.
15 Horiuchi T., Nagata M., Kitagawa M., Akahane K., and Uoto K. (2009) Discovery of novel thieno [2, 3-d] pyrimidin-4-yl hydrazone-based inhibitors of Cyclin D1-CDK4: Synthesis, biological evaluation and structure–activity relationships. Part 2. Bioorg. Med. Chem., 17(23), 7850-7860.
16 Havaldar F. H., and Khatri N. K. (2006) Syntheses and biological activity of 2-(4'-diethylsulfonamide phenyl)-4-substituted aminomethyl-1, 3, 4-oxadiazolin-5-thiones. Heterocycl. Commun., 12(6), 453-456.
17 Naclerio G. A., Abutaleb N. S., Onyedibe K. I., Karanja C., Eldesouky H. E., Liang H. W., and Sintim H. O. (2022) Mechanistic studies and in vivo efficacy of an oxadiazole-containing antibiotic. J. Med. Chem., 65(9), 6612-6630.
18 Drach B.S., Sviridov E.P., Kisilenko A.A., and Kirsanov A.V. (1973) Interaction of secondary amines with N-acyl-2,2-dichlorovinylamines and N-acyl-1-cyano-2,2-dichlorovinylamines. J. Org. Chem. USSR (Engl. Transl.)., 9, 1842-1846.
19 Najer, H., Giudicelli, R., Menin, J. (1960) Bull. Soc. Chim., 2052.
20 Hsu L. H., Chu N. M., and Kao S. H. (2017) Estrogen, estrogen receptor and lung cancer. Int. J. Mol. Sci., 18(8), 1713.
21 Cardoso C. M., Custódio J. B., Almeida L. M., and Moreno A. J. (2001) Mechanisms of the deleterious effects of tamoxifen on mitochondrial respiration rate and phosphorylation efficiency. Toxicol. Appl. Pharmacol., 176(3), 145-152.
22 Kallio A., Zheng A., Dahllund J., Heiskanen K. A., and Härkönen, P. (2005) Role of mitochondria in tamoxifen-induced rapid death of MCF-7 breast cancer cells. Apoptosis, 10, 1395-1410.
23 Unten Y., Murai M., Koshitaka T., Kitao K., Shirai O., Masuya T., and Miyoshi, H. (2022) Comprehensive understanding of multiple actions of anticancer drug tamoxifen in isolated mitochondria. Biochim. Biophys. Acta. Bioenerg., 1863(2), 148520.
24 Da Motta L. L., De Bastiani M. A., Stapenhorst F., and Klamt F. (2015) Oxidative stress associates with aggressiveness in lung large-cell carcinoma. Tumor Bio., 36(6), 4681-4688.
25 Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., and Bourne P. E. (2000) The protein data bank. Nucleic. Acids. Res., 28(1), 235-242.
26 Kachaeva M. V., Hodyna D. M., Obernikhina N. V., Pilyo S. G., Kovalenko Y. S., Prokopenko V. M., and Brovarets V. S. (2019) Dependence of the anticancer activity of 1, 3‐oxazole derivatives on the donor/acceptor nature of his substitues. J. Heterocyclic Chem., 56(11), 3122-3134.
27 Boyd M. R., and Paull K. D. (1995) Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug. Dev. Res., 34(2), 91-109.
28 Boyd M.R. (1997) The NCI In Vitro Anticancer Drug Discovery Screen, Humana Press, Totowa, New York.
29 Shoemaker R. H. (2006) The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer, 6(10), 813-823.
30 Paull K. D., Shoemaker R. H., Hodes L., Monks A., Scudiero D. A., Rubinstein L., and Boyd M. R. (1989) Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J. Natl. Cancer Inst., 81(14), 1088-1092.
31 Mukaka M. M. (2012) A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J., 24(3), 69-71.
32 Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., and Olson, A. J. (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 30(16), 2785-2791.
33 ChemAxon, Marvin Sketch 5.3.735, https://www.chemaxon.com (assessed 05 May 2024).
34 Hanwell M. D., Curtis D. E., Lonie D. C., Vandermeersch T., Zurek E., and Hutchison G. R. (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 4, 1-17.
35 Trott O., and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 31(2), 455-461.
36 Dassault Systèmes, Discovery Studio Visualizer, https://discover.3ds.com/ (assessed 05 May, 2024).
Pires D. E., Blundell T. L., and Ascher D. B. (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 58(9), 4066-4072.
2 Dobrydnev A.V., Tkachuk T.M., Atamaniuk V.P., and Popova M.V. (2020) Quercetin-amino acid conjugates are promising anti-cancer agents in drug discovery projects. Mini rev. Med. Chem., 20 (2), 107–122.
3 Ballatore C., Huryn D. M., and Smith A. B. (2013) Carboxylic acid (bio)isosteres in drug design. ChemMedChem, 8 (3), 385–395.
4 Dobrydnev A. V., Vashchenko B. V., and Volovenko Y. M. (2018) The simplest synthesis of 5, 5-disubstituted and spiranic methyl 4-amino-2, 2-dioxo-2, 5-dihydro-1, 2λ6-oxathiole-3-carboxylates. Tetrahedron let., 59(16), 1581-1582.
5 Wani T. A., Zargar S., Alkahtani H. M., Altwaijry N., and Al-Rasheed L. S. (2023) Anticancer Potential of Sulfonamide Moieties via In-Vitro and In-Silico Approaches: Comparative Investigations for Future Drug Development. Int. J. mol. Sci., 24(9), 7953.
6 Popov I. O., Popova M. V., Omelian, T. V., Dobrydnev A. V., Konovalova, I. S., Shishkina, S. V., Grygorenko O. O., and Volovenko Yu. M. (2021) Reaction of dialkylaminosulfur trifluorides with β-keto sulfonamides and β-keto sulfones. ChemistrySelect, 6, 3084–3088.
7 Cassileth P. A., and Gale R. P. (1986) Amsacrine: a review. Leuk. Res., 10(11), 1257–1265.
8 Poole R.M. (2014) Belinostat: First Global Approval. Drugs, 74, 1543–1554.
9 Ballantyne A. D., and Garnock-Jones K. P. (2013) Dabrafenib: first global approval. Drugs, 73(12), 1367–1376.
10 Lemjabbar-Alaoui H., Hassan O. U., Yang Y. W., and Buchanan P. (2015) Lung cancer: Biology and treatment options. Biochim. Biophys. Acta, 1856(2), 189–210.
11 Shen H., Yuan Y., Sun J., Gao W., and Shu Y. Q. (2010) Combined tamoxifen and gefitinib in non-small cell lung cancer shows antiproliferative effects. Biomed. Pharmacother., 64(2), 88–92.
12 Shao X., Liu Y., Li Y., Xian M., Zhou Q., Yang B., Ying M., and He Q. (2016) The HER2 inhibitor TAK165 Sensitizes Human Acute Myeloid Leukemia Cells to Retinoic Acid-Induced Myeloid Differentiation by activating MEK/ERK mediated RARα/STAT1 axis. Sci Rep., 6, 24589.
13 Kachaeva M. V., Pilyo S. G., Demydchuk B. A., Prokopenko V. M., Zhirnov V. V., and Brovarets V. S. (2018) 4-Cyano-1, 3-oxazole-5-sulfonamides as novel promising anticancer lead compounds. Int. J. Curr. Res., 10, 69410-69425.
14 Hogan P. J., and Cox B. G. (2009) Aqueous process chemistry: the preparation of aryl sulfonyl chlorides. Org. Proc. Res. Dev. 13, 875–879.
15 Horiuchi T., Nagata M., Kitagawa M., Akahane K., and Uoto K. (2009) Discovery of novel thieno [2, 3-d] pyrimidin-4-yl hydrazone-based inhibitors of Cyclin D1-CDK4: Synthesis, biological evaluation and structure–activity relationships. Part 2. Bioorg. Med. Chem., 17(23), 7850-7860.
16 Havaldar F. H., and Khatri N. K. (2006) Syntheses and biological activity of 2-(4'-diethylsulfonamide phenyl)-4-substituted aminomethyl-1, 3, 4-oxadiazolin-5-thiones. Heterocycl. Commun., 12(6), 453-456.
17 Naclerio G. A., Abutaleb N. S., Onyedibe K. I., Karanja C., Eldesouky H. E., Liang H. W., and Sintim H. O. (2022) Mechanistic studies and in vivo efficacy of an oxadiazole-containing antibiotic. J. Med. Chem., 65(9), 6612-6630.
18 Drach B.S., Sviridov E.P., Kisilenko A.A., and Kirsanov A.V. (1973) Interaction of secondary amines with N-acyl-2,2-dichlorovinylamines and N-acyl-1-cyano-2,2-dichlorovinylamines. J. Org. Chem. USSR (Engl. Transl.)., 9, 1842-1846.
19 Najer, H., Giudicelli, R., Menin, J. (1960) Bull. Soc. Chim., 2052.
20 Hsu L. H., Chu N. M., and Kao S. H. (2017) Estrogen, estrogen receptor and lung cancer. Int. J. Mol. Sci., 18(8), 1713.
21 Cardoso C. M., Custódio J. B., Almeida L. M., and Moreno A. J. (2001) Mechanisms of the deleterious effects of tamoxifen on mitochondrial respiration rate and phosphorylation efficiency. Toxicol. Appl. Pharmacol., 176(3), 145-152.
22 Kallio A., Zheng A., Dahllund J., Heiskanen K. A., and Härkönen, P. (2005) Role of mitochondria in tamoxifen-induced rapid death of MCF-7 breast cancer cells. Apoptosis, 10, 1395-1410.
23 Unten Y., Murai M., Koshitaka T., Kitao K., Shirai O., Masuya T., and Miyoshi, H. (2022) Comprehensive understanding of multiple actions of anticancer drug tamoxifen in isolated mitochondria. Biochim. Biophys. Acta. Bioenerg., 1863(2), 148520.
24 Da Motta L. L., De Bastiani M. A., Stapenhorst F., and Klamt F. (2015) Oxidative stress associates with aggressiveness in lung large-cell carcinoma. Tumor Bio., 36(6), 4681-4688.
25 Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., and Bourne P. E. (2000) The protein data bank. Nucleic. Acids. Res., 28(1), 235-242.
26 Kachaeva M. V., Hodyna D. M., Obernikhina N. V., Pilyo S. G., Kovalenko Y. S., Prokopenko V. M., and Brovarets V. S. (2019) Dependence of the anticancer activity of 1, 3‐oxazole derivatives on the donor/acceptor nature of his substitues. J. Heterocyclic Chem., 56(11), 3122-3134.
27 Boyd M. R., and Paull K. D. (1995) Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug. Dev. Res., 34(2), 91-109.
28 Boyd M.R. (1997) The NCI In Vitro Anticancer Drug Discovery Screen, Humana Press, Totowa, New York.
29 Shoemaker R. H. (2006) The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer, 6(10), 813-823.
30 Paull K. D., Shoemaker R. H., Hodes L., Monks A., Scudiero D. A., Rubinstein L., and Boyd M. R. (1989) Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J. Natl. Cancer Inst., 81(14), 1088-1092.
31 Mukaka M. M. (2012) A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J., 24(3), 69-71.
32 Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., and Olson, A. J. (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 30(16), 2785-2791.
33 ChemAxon, Marvin Sketch 5.3.735, https://www.chemaxon.com (assessed 05 May 2024).
34 Hanwell M. D., Curtis D. E., Lonie D. C., Vandermeersch T., Zurek E., and Hutchison G. R. (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 4, 1-17.
35 Trott O., and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 31(2), 455-461.
36 Dassault Systèmes, Discovery Studio Visualizer, https://discover.3ds.com/ (assessed 05 May, 2024).
Pires D. E., Blundell T. L., and Ascher D. B. (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 58(9), 4066-4072.