How to cite this paper
Pulagam, M & Bollikolla, H. (2025). PEG 400-Catalyzed C3 and O-Alkylation Reactions of 4-Hydroxycoumarin-A Study.Current Chemistry Letters, 14(1), 129-138.
Refrences
[1] Safavi-Mirmahalleh S-A., Golshan M., Gheitarani B., Hosseini M. S., and Salami-Kalajahi M. (2023) A review on applications of coumarin and its derivatives in preparation of photo-responsive polymers. Eur. Poly. J., 198 112430.
https://doi.org/10.1016/j.eurpolymj.2023.112430.
[2] Cao D., Liu Z., Verwilst P., Koo S., Jangjili P., Kim J. S., and LinW. (2019) Coumarin-based small-molecule fluorescent chemosensors. Chem. Rev., 119(18), 10403-10519. https://doi.org/10.1021/acs.chemrev.9b00145.
[3] Citarella A., Vittorio, S., Dank, C., and Ielo L. (2024) Syntheses, reactivity, and biological applications of coumarins. Front Chem., 12 1362992. Doi: 10.3389/fchem.2024.1362992.
[4] Annunziata F., Pinna C., Dallavalle S., Tamborini L., and Pinto A. (2020) An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int. J. Mol. Sci., 214618. https://doi.org/10.3390/ijms21134618.
[5] Srikrishna D., Godugu C., and Dubey P. K. (2018) A review on pharmacological properties of coumarins. Mini Rev. Med. Chem., 18 113-141. 10.2174/1389557516666160801094919.
[6] Balewski Ł., Szulta S., Jalińska A., and Kornicka A. (2021) A mini-review: Recent advances in coumarin-metal complexes with biological properties. Front. Chem., 9781779. 10.3389/fchem.2021.781779.
[7] Srikrishna D., Godugu C., and Dubey P. K. (2018) A review on pharmacological properties of coumarins. Mini Rev. Med. Chem., 18(2) 113-141. 10.2174/1389557516666160801094919.
[8] Bouhaoui A., Eddahmi M., Dib M., Khouili M., Aires A., Catto M.,&BouissaneL. (2021) Synthesis and biological properties of coumarin derivatives-A review. ChemistrySelect, 16(24) 5848-5870. https://doi.org/10.1002/slct.202101346.
[9] Gouda M. A., Salem M. A., and Helal M. H. (2020) A review on synthesis and pharmacological activity of coumarins and their analogs. Curr. Bioactive Comp., 16(6) 818-836. https://doi.org/10.2174/1573407215666190405154406.
[10] Borah B., Dwivedi K. D., and Chowhan L. R. (2021) 4-Hydroxycoumarin: A versatile substrate for transition-metal-free multicomponent synthesis of bioactive heterocycles. Asian J. Org. Chem., 10(12) 3101-3126. https://doi.org/10.1002/ajoc.202100550.
[11] Jung J-C., and Park O-S. (2009) Synthetic approaches and biological activities of 4-hydroxycoumarin derivatives. Molecules. 14(11) 4790-4803. 10.3390/molecules14114790.
[12] Romal J. R. A., and Ong S. K. (2023) Extending the library of 4-hydroxycoumarin derivatives with potential pharmacological activity by a catalyst-free and purification-free method. ChemistrySelect, 8(10) e202300519.
https://doi.org/10.1002/slct.202300519.
[13] Ziarani G. M., Moradi R., Ahmadi T., and Gholamzadeh P. (2019) The molecular diversity scope of 4-hydroxycoumarin in the synthesis of heterocyclic compounds via multicomponent reactions. Mol. Divers., 23 1029-1064.
https://doi.org/10.1007/s11030-019-09918-7.
[14] Mali G., Maji S., Chavan K. A., Shukla M., Kumar M., Bhattacharyya S., andErandeR. D. (2022) Effective synthesis and biological evaluation of functionalized2,3-dihydrofuro[3,2-c]coumarins via an imidazole-catalyzed green multicomponent approach. ACS Omega, 7(40)36028-36036. https://doi.org/10.1021/acsomega.2c05361.
[15] Abdou M. M., El-Saeed R. A., and Bondock S. (2019) Recent advances in 4-hydroxycoumarin chemistry. Part 1: Synthesis and reactions, Arabian J. Chem., 12(1) 88-121. https://doi.org/10.1016/j.arabjc.2015.06.012.
[16] Abdou M. M., El-Saeed R. A., and Bondock S. (2019) Recent advances in 4-hydroxycoumarin chemistry. Part 2: Synthesis and reactions, Arabian J. Chem., 12(7) 974-1003. https://doi.org/10.1016/j.arabjc.2015.06.029.
[17] Su Q., Qian H., Li Z., Sun X., and Wang Z. (2017) Lewis-base-catalyzed alkylation reaction of 4-hydroxycoumarins with allenoates: Regioselective synthesis of 2H-[3,2-c] furocoumarins and 4-hydroxycoumarin vinyl ether derivatives. Asian J. Org. Chem., 6(5) 512-515. https://doi.org/10.1002/ajoc.201600631.
[18] Narayana V., Varala R., and Zubaidha P. K. (2012) SO42-/SnO2-Catalyzed C3-alkylation of 4- hydroxycoumarin with secondary benzyl alcohols and O-alkylation with O- acetyl compounds. Int. J. Org. Chem., 2 (3A) 287-294. 10.4236/ijoc.2012.223039
[19] Bandaru S. K., and Risi M. C. (2022) Zn(OAc)2.2H2O-Catalyzed C3-alkylation and O-alkylation of 4-hydroxycoumarin derivatives. Caribbean J. Sci. Tech., 10(2) 10-16.10.55434/CBI.2022.2010 and references cited therein.
[20] Winterton N. (2021) The green solvent: a critical perspective. Clean Technol. Environ. Policy., 23(9) 2499-2522. 10.1007/s10098-021-02188-8.
[21] Sheldon R. A. (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem., 7267-278. https://doi.org/10.1039/B418069K
[22] Soni J. P., Nusrat S., Sethiya A., and Agarwal S. (2020) Polyethylene glycol: A promising approach for sustainable organic synthesis. J. Mol. Liq., 315, 113766. https://doi.org/10.1016/j.molliq.2020.113766
[23] Hoffmann M. M. Polyethylene glycol as a green chemical solvent. (2022) Curr. Opin. Colloid In., 57 101537. https://doi.org/10.1016/j.cocis.2021.101537
[24] Liwei X., Fucai D., Zheng L., Xuemin J., Jie K., and Guangxian L. (2019)Polyethylene glycol: A new medium for green organic synthesis[J]. Chin. J. Org. Chem., 39(3) 648-660.https://doi.org/10.6023/cjoc201807056
[25] Kardooni R., and Kiasat A. R. (2020) Polyethylene glycol as a green and biocompatible reaction media for the catalyst free synthesis of organic compounds.Curr. Org. Chem., 24 1275-1314. 10.2174/1385272824999200605161840
[26] Chen J., Spear S. K., Huddleston J. G., and Rogers R. D. (2005) Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem., 7 64-82. https://doi.org/10.1039/B413546F
[27] Andrade C. K. Z., and Alves L. M. (2005) Environmentally benign solvents in organic synthesis: current topics. Curr. Org. Chem., 9 195-218. https://doi.org/10.2174/1385272053369178
[28] Qadir M., Yaseen A., and Shah W. A. (2023) PEG-400 catalysed selective C-Se cross dehydrogenative coupling: An ultrasonication‐assisted green strategy. Results in Chemistry, 5 100944. https://doi.org/10.1016/j.rechem.2023.100944
[29] Yaseen A., Waseem M. A., Qadir M., Dar P. A., Hijazi S., Hussain M. A., and Shah W. A. (2022). PEG-400 catalyzed N-C, O-C & C-S bond formations: A robust sonication promoted synthesis of benzo[d]oxazole-2 (3H)-thione& benzo[d]thiazole-2(3H)-thione hybrids. Analytical Chem. Lett., 12(3) 302-309. https://doi.org/10.1080/22297928.2022.2068376
[30] Hari Babu B., Vijay K., Krishna K. B. M., Sharmila N., and Baby Ramana M. (2016) An efficient PEG-400 mediated catalyst free green synthesis of 2-amino-thiazoles from α-diazoketones and thiourea. J. Chem. Sci., 128(9) 1475-1478. https://doi.org/10.1007/s12039-016-1130-0
[31] Mekala R. S., Balam S. K., Harinath J. P. S., Gajjal R. R., Cirandur S. R., and Weaver G. (2015). Polyethylene glycol (PEG-400): An efficient medium for the synthesis of 1,2-disubstituted benzimidazoles. Cogent Chemistry, 1(1) 1049932. https://doi.org/10.1080/23312009.2015.1049932
[32] Nagaraju K., Gummidi L., Maddila S., and Jonnalagadda S. B. (2020) Polyethylene glycol (PEG-400) mediated one-pot green synthesis of 4,7-dihydro-2H-pyrazolo[3,4-b]pyridines under catalyst-free conditions. ChemistrySelect, 5(40)
12407-12410. https://doi.org/10.1002/slct.202002538
[33] Patnala H., Abbo H. S., Potla K. M., Titinchi S. J. J., and Chinnam S. (2019) Polyethylene glycol (PEG-400): An efficient one-pot green synthesis and anti-viral activity of novel α-diaminophosphonates, Phosphorus, Sulfur, and Silicon and the Relat. Elem., 194(11), 1035-1039, https://doi.org/10.1080/10426507.2019.1597365
[34] Hasaninejad A., and Beyrati M. (2018) Eco-friendly polyethylene glycol (PEG-400): a green reaction medium for one-pot, four-component synthesis of novel asymmetrical bis-spirooxindole derivatives at room temperature. RSC Adv., 8(4) 1934-1939. https://doi.org/10.1039/c7ra13133j
[35] Lim H. Y., and Dolzhenko A. V. (2023) Polyethylene glycol as a green medium for the microwave-assisted synthesis of guanamines. ChemistrySelect. 8(29) e202302106. https://doi.org/10.1002/slct.202302106
[36] Ponduri R., Kumar P., and Vadali L. R. (2018) PEG-400 promoted a simple, efficient, and recyclable catalyst for the one-pot eco-friendly synthesis of functionalized isoxazole substituted pyrroles in aqueous medium. Synth.Commun., 48(24), 3113-3122. https://doi.org/10.1080/00397911.2018.1535078
[37]Boddapati S. N. M., Tamminana R., Alam M. M., Gugulothu S., Varala R., and Bollikolla H. B. (2021) Efficient Pd(II)-catalyzed regioselective ortho-halogenation of arylcyanamides. New J. Chem., 45 17176-17182. https://doi.org/10.1039/D1NJ01998H
[38] Rao G. V., Allaka T. R., Gandla M. K., Nanda P. K. V. V., Pindi S. R., Vaddi P. R. R., and Bollikolla H. B. (2023) Synthesis, antimicrobial activity, and in silico studies of fluoroquinolones bearing 1,3,4-oxadiazolyl-triazole derivatives. J. Het.Com., 60(10) 1666-1683. https://doi.org/10.1002/jhet.4700
[39]Merugu S. K., Krishnan V. B. R., Ansari S. A., Ansari I. A., and Bollikolla, H. B.(2023) Synthesis, anticancer evaluation and in silico studies of 1,4-dihydropyridines. Chem. Biodivers., 20(8) e202201158. https://doi.org/10.1002/cbdv.202201158
[40] Atikala, V. K., Ansari S. A., Ansari I. A., Kumar R. K., and Bollikolla H. B. (2024) Synthesis of 2-aryl indazole: synthesis, biological evaluation and in-silico studies. Chem. Biodivers., 20(8) e202201158. https://doi.org/10.1002/cbdv.202302085
[41] Bollikolla H. B., Anandam R., Chinnam S., Varala R., Khandapu B. M. K.,Kapavarapu R., Syed K. S., Dubasi N., and Syed M. A. (2023) C-Dimethylated flavones as possible potential anti-tubercular and anticancer agents. Chem. Biodivers., 20(4) e202201201. https://doi.org/10.1002/cbdv.202201201
[42] Krishnan V. B. R., Merugu S. K., Gali S. J., Kapavarapu R., and Bollikolla H. B. (2022) Efficient multicomponent synthesis of Biginelli-dihydro-pyrimidines and evaluation of anti-cancer activity. ChemistrySelect, 7(29) e202201630. https://doi.org/10.1002/slct.202201630
[43] Chatterjee R., Mukherjee A., Zyryanov G. V., Majee A. (2020) Metal and solvent free direct C3-alkylation of 4-hydroxycoumarins with styrene. AIP Conf. Proc., 2280 040011. https://doi.org/10.1063/5.0018529
[44] Alam M. M., Varala R., and Seema V. (2024) Zinc Acetate in organic synthesis and catalysis: A review. Min. Rev. Org. Chem., 21 555-587. https://doi.org/10.2174/1570193X20666230507213511
[45] Babu H. B., Varala R., and Alam M. M. (2022) Zn(OAc)2.2H2O-Catalyzed Betti base synthesis under solvent free conditions. Lett. Org. Chem., 19 14-18. https://doi.org/10.2174/1570178618666210616155257
[46] Reddy V. V. R., Saritha B., Ramu R., Varala R., and Jayashree A. (2014) Zn(OAc)2.2H2O-catalyzed one-pot efficient synthesis of aminonitriles. Asian J. Chem., 26 7439-7442. https://doi.org/10.14233/ajchem.2014.17180
[47] Ramu E., Varala R., Sreelatha N., and Adapa S. R. (2007) Zn(OAc)2·2H2O: A versatile catalyst for the one-pot synthesis of propargylamines. Tetrahedron Lett., 48 7184-7190. https://doi.org/10.1016/j.tetlet.2007.07.196
[48] Kokane B. D., Varala R., and Patil S. G. (2022)Zn(OAc)2·2H2O: An efficient catalyst for the one-pot synthesis of 2-substituted benzothiazoles. Org. Commun., 15 378-385.https://doi.org/10.25135/acg.oc.140.2210.2618
[49] Chinta B., Satyadev T. N. V. S. S., and Adilakshmi G. V. (2023) Zn(OAc)2•2H2O-catalyzed one-pot synthesis of divergently substituted imidazoles. Curr. Chem. Lett., 12 175-184.https://doi.org/10.5267/j.ccl.2022.8.007
[50] Pulle J. S., Totawar P. R., and Varala R. (2023) Zn(OAc)2·2H2O-Catalyzed green synthesis of substituted 1-amido/thioamidoalkyl-2-naphthols. Rev. Roum. Chim., 68 75-83.https://doi.org/10.33224/rrch.2023.68.1-2.07
[51] Mukherjee A., Mahato S., Zyryanov G. V., Majee A., and Santra S. (2020) Diverse synthesis of pyrano[3,2-c]coumarins: a brief update. New J. Chem., 44 18980-18993. https://doi.org/10.1039/D0NJ03846F
[52] Hsieh W. C., Lin C. H., Yang Y. J., and Yang D. Y. (2018) Multicomponent synthesis of pyrano[2,3-c]coumarins. RSC Adv., 8(68) 39162-39169. https://doi.org/10.1039/c8ra06666c
[53] Douka M. D., and Litinas K. E. (2022) An overview on the synthesis of fused pyridocoumarins with biological Iinterest. Molecules. 27(21) 7256. https://doi.org/10.3390/molecules27217256
[54] Solovyev I.V., Zhukovsky D.D., Dar’in D.V., and Krasavin M.Y. (2020) N-Alkylation of nitrogen heterocycles with α-diazocarbonyl compounds. Chem. Heterocycl. Comp., 56 809-813. https://doi.org/10.1007/s10593-020-02736-y
[55] Pavlinac I.B., Starčević K., Persoons L., Banjanac M., Radovanović V., Daelemans D., and Hranjec M. (2024) Novel iminocoumarinimidazo[4,5-b]pyridine derivatives: design, synthesis, and biological evaluation. Chem. Heterocycl.
Comp., 60 75-82. https://doi.org/10.1007/s10593-024-03296-1
[56] Sharapov A.D., Fatykhov R.F., and Khalymbadzha I.A. (2024) Synthesis of fluorophores based on benzo[g]coumarin framework (microreview). Chem. Heterocycl. Comp., 60 26-28. https://doi.org/10.1007/s10593-024-03286-3
[57] Zavodskaya A.V., Parfenov V.E., Golovina O.V., and Bakharev V.V. (2024) A cascade reaction of 4-amino-substituted 6-hydrazinyl-1,3,5-triazin-2(1H)-ones with triethyl orthoacetate. Chem. Heterocycl. Comp., 60 58-67. https://doi.org/10.1007/s10593-024-03294-3
[58] Vinokurov A.D., Iliyasov T.M., Karpenko K.A.,Akchurin, R.N., Derkach, Y.V., and Vereshchagin A.N. (2023) Highly diastereoselective synthesis of pyridinium-substituted piperidin-2-ones from pyridinium ylides, aldehydes, Michael acceptors, and ammonium acetate. Chem. Heterocycl. Comp., 59 778-785. https://doi.org/10.1007/s10593-024-03271-w
[59] Lelyukh M., Paliy A., Zhukrovska M., Kalytovska M., Chaban I., Shelepeten L., and Chaban T. (2024) A review on synthetic approaches for obtaining and chemical modification of 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole based heterocyclic compounds. Curr. Chem. Lett., 13 737-752. 10.5267/j.ccl.2024.3.007
[60] Tolba M.S., Abd ul-Malik M.A., El-Dean A.M.K., Geies A.A., Radwan S.M., Zaki R.M., Sayed M., Mohamed S.K., and AbdelRaheem S.A.A. (2022) An overview on synthesis and reactions of coumarin based compounds. Curr. Chem. Lett., 11 29-42. 10.5267/j.ccl.2021.9.007