How to cite this paper
Veni, P., Saradhi, C & Rani, G. (2024). Zn(OAc)2•2H2O- Catalyzed Synthesis of Chromeno[2,3-d] Pyrimidinones under Solvent-free Conditions.Current Chemistry Letters, 13(4), 677-682.
Refrences
1. Varala R. (2016). Scope of selective heterocycles from organic and pharmaceutical perspective. ISBN 978-953-51-2503-7; DOI: https://doi.org/10.5772/60890
2. Bollikolla H. B., Dhayanidhi S., Yangalasetty L. P., Lakshmi, G. J. V. S. N. D., Onteddu, S. R., Aangothu, S. R., Chandu, B., and Varala, R. (2023) Synthetic methodologies of anticancer active pyrimidines: Update from 2015-till date. Caribbean J. Sci. Tech., 11 1-7.
3. Maurya H. K., and Gupta A. (2014) A convenient synthesis of pyrimidinone and pyrimidine containing bisheteroarenes and analogs. RSC Adv., 4 22106-22114.
4. Seboletswe P., Awolade P., and Singh P. (2021) Recent developments on the synthesis and biological activities of fused pyrimidinone derivatives. ChemMedChem., 16 2050-2067.
5. Naikoo R. A., Kumar R., Kumar V., and Bhargava G. (2022) Recent developments in the synthesis of bicyclic condensed pyrimidinones. Curr. Org. Chem., 26 122-161.
6. Varala R., Alam M. M., and Adapa S. R. (2003) Bismuth triflate catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones: An improved protocol for the Biginelli reaction. Synlett 1 67-70.
7. Ramu E., Kotra V., Bansal N., Varala R., and Adapa S. R. (2008) Green approach for the efficient synthesis of Biginelli compounds promoted by citric acid under solvent-free conditions. Rasayan J. Chem., 1 188-194.
8. Totawar P. R., Pulle, J. S., Varala R., and Kotra V. (2023) Synthesis of phthalimide and naphthalimide derived Biginelli compounds and evaluation of their anti-inflammatory and anti-oxidant activities. Curr. Chem. Lett., 12, 249-256.
9. Pisal P. M., Sawant A. S., Kamble V. T., Varala R., Adil S. F., Khan M., and Siddiqui M. R. H. (2020) ZrCl4-catalyzed one-pot multi-component synthesis of hexahydropyrano pyrimidinone derivatives. Org. Commun., 13 28-32.
10. Raj V., and Lee J. (2020) 2H/4H-Chromenes-A versatile biologically attractive scaffold. Front. Chem., 8 623.
11. Chaudhary A., Singh K., Verma N., Kumar S., Kumar D., and Sharma P. P. (2022) Chromenes-A novel class of heterocyclic compounds: Recent advancements and future directions. Mini Rev. Med. Chem., 22 2736-2751.
12. Pratap R., and Ram V. J. (2014) Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem. Rev., 114 10476-10526.
13. Narayana V. R., Pudukulathan Z., and Varala R. (2013) SO42-/SnO2-Catalyzed efficient one-pot synthesis of 7,8-dihydro-2H-chromen-5-ones by formal [3+3] cycloaddition and 1,8-dioxo-octahydroxanthenes via a Knoevenagel condensation. Org. Commun., 6 110-119.
14. Merugu S., Ponnamaneni V. K., Varala R., Adil S. F., Khan M., Siddiqui M. R. H., and Vemula R. (2020) Metal-free catalyzed one-pot multicomponent synthesis of (E)-3-(2-((5-(benzylideneamino)-1,3,4-thiadiazol-2-yl) thio)acetyl)-2H-chromen-2-one derivatives and their biological evaluation. J. Chem., Article ID 4869279.
15. Kumar R., Raghuvanshi K., Verma R. K., and Singh M. S. (2010) Application of cyclic-1,3-diketones in domino and multicomponent reactions: Facile route to highly functionalized chromeno[2,3-d]pyrimidinones and diazabenzo[b]fluorenones under solvent-free conditions. Tetrahedron Lett., 51 5933-5936.
16. Bhattacharjee D., Sutradhar D., Chandra A. K., and Myrboh B. (2017) L-proline as an efficient asymmetric induction catalyst in the synthesis of chromeno[2,3-d]pyrimidine-triones, xanthenes in water. Tetrahedron., 73 3497-3504.
17. Kumari S., Kumar D., Gajaganti S., Srivastava V., and Singh, S. (2019) Sc(OTf)3 catalysed multicomponent synthesis of chromeno[2,3-d]pyrimidinetriones under solvent-free condition. Synth. Commun., 49 431-443.
18. Rai P., Sagir H., Kumar A., Yadav V. B., and Siddiqui I. R. (2018) Organocatalyzed synthesis of medicinally important chromeno[2, 3-d]pyrimidine-triones in biodegradable reaction medium. ChemistrySelect 3 2565-2570.
19. Ghahremanzadeh R., Fereshtehnejad F., and Bazgir A. (2010) Chromeno[2,3-d]pyrimidine-triones synthesis by a three-component coupling reaction. Chem. Pharm. Bull., 58 516-520.
20. Chaker A., Najahi E., Nepveu F., and Chabchou F. (2017) Microwave-assisted synthesis of chromeno[2,3-d] pyrimidinone derivatives. Arab. J. Chem., 10 S3040-S3047.
21. Alam M. M., Varala R., and Seema V. (2024) Zinc Acetate in organic synthesis and catalysis: A review. Min. Rev. Org. Chem., 21 555-587.
22. Babu H. B., Varala R., and Alam M. M. (2022) Zn(OAc)2.2H2O-Catalyzed Betti base synthesis under solvent free conditions. Lett. Org. Chem., 19 14-18. .
23. Reddy V. V. R., Saritha B., Ramu R., Varala R., and Jayashree, A. (2014) Zn(OAc)22H2O-catalyzed one-pot efficient synthesis of aminonitriles. Asian J. Chem., 26 7439-7442.
24. Ramu E., Varala R., Sreelatha N., and Adapa S. R. (2007) Zn(OAc)2·2H2O: A versatile catalyst for the one-pot synthesis of propargylamines. Tetrahedron Lett., 48 7184-7190.
25. Kokane B. D., Varala R., and Patil S. G. (2022) Zn(OAc)2·2H2O: An efficient catalyst for the one-pot synthesis of 2-substituted benzothiazoles. Org. Commun., 15 378-385.
26. Chinta B., Satyadev T. N. V. S. S., and Adilakshmi G. V. (2023) Zn(OAc)2•2H2O-catalyzed one-pot synthesis of divergently substituted imidazoles. Curr. Chem. Lett., 12 175-184.
27. Pulle J. S., Totawar P. R., and Varala R. (2023) Zn(OAc)2·2H2O-Catalyzed green synthesis of substituted 1-amido/thioamidoalkyl-2-naphthols. Rev. Roum. Chim., 68 75-83.
28. Tanaka K., and Toda F. (2000) Solvent-free organic synthesis. Chem. Rev., 100 1025-1074.
29. Zangade S., and Patil P. (2019) A review on solvent-free methods in organic synthesis. Curr. Org. Chem., 23 2295-2318.
30. Avila-Ortiz C. G., and Juaristi E. (2020) Novel methodologies for chemical activation in organic synthesis under solvent-free reaction conditions. Molecules 25 3579.
31. Gawande M. B., Bonifcio V. D. B., Luque R., Branco P. S., and Varma R. S. (2014) Solvent-free and catalysts-free chemistry: A benign pathway to sustainability. ChemSusChem., 7 24-44.
32. Dresler E. Wróblewska A., and Jasiński R. (2022) Understanding the regioselectivity and the molecular mechanism of [3+2] cycloaddition reactions between nitrous oxide and conjugated nitroalkenes: A DFT computational study. Molecules 27 8441.
33. Demydchuk B. A., Rusanov E. B., Rusanova, J. A., and Brovaretsa V. S. (2017) Regioselective synthesis of bicyclic 1,3,5-triazepine system starting from tetrachloro-2-aza-1,3-butadienes. Curr. Chem. Lett., 6 49-54.
34. Kemskyi S., Fedoriva M., Palamar A., Grozav A., Chornous V., Kutsyk R., Dorokhov V., and Vovk M. (2023) Synthesis and evaluation of antimicrobial activity of some new 3-(pyrrol-4-yl)acrylamide derivatives. Curr. Chem. Lett., 12 519-528.
35. Dresler E., Wróblewska A., and Jasiński R. (2023) Understanding the molecular mechanism of thermal and LA-catalysed Diels-Alder reactions between cyclopentadiene and isopropyl 3-nitroprop-2-enate. Molecules 28 5289.
36. Ponomarev G. V., Kirillova G. V., and Yashunsky D. V. (2000) Porphyrins. 38. Reaction of porphyrins containing hydroxy(alkoxy)ethyl or alkoxymethyl substituents with nucleophiles in the presence of zinc acetate. A novel, promising method for the modification of porphyrins on the periphery of the macrocycle. Chem. Heterocycl. Comp., 36 1044-1053.
37. Kula K., and Sadowski M. (2023) Regio- and stereoselectivity of [3+2] cycloaddition reactions between (Z)-1-(anthracen-9-yl)-N-methyl nitrone and analogs of trans-β-nitrostyrene on the basis of MEDT computational study. Chem. Heterocycl. Comp., 59 138-144.
2. Bollikolla H. B., Dhayanidhi S., Yangalasetty L. P., Lakshmi, G. J. V. S. N. D., Onteddu, S. R., Aangothu, S. R., Chandu, B., and Varala, R. (2023) Synthetic methodologies of anticancer active pyrimidines: Update from 2015-till date. Caribbean J. Sci. Tech., 11 1-7.
3. Maurya H. K., and Gupta A. (2014) A convenient synthesis of pyrimidinone and pyrimidine containing bisheteroarenes and analogs. RSC Adv., 4 22106-22114.
4. Seboletswe P., Awolade P., and Singh P. (2021) Recent developments on the synthesis and biological activities of fused pyrimidinone derivatives. ChemMedChem., 16 2050-2067.
5. Naikoo R. A., Kumar R., Kumar V., and Bhargava G. (2022) Recent developments in the synthesis of bicyclic condensed pyrimidinones. Curr. Org. Chem., 26 122-161.
6. Varala R., Alam M. M., and Adapa S. R. (2003) Bismuth triflate catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones: An improved protocol for the Biginelli reaction. Synlett 1 67-70.
7. Ramu E., Kotra V., Bansal N., Varala R., and Adapa S. R. (2008) Green approach for the efficient synthesis of Biginelli compounds promoted by citric acid under solvent-free conditions. Rasayan J. Chem., 1 188-194.
8. Totawar P. R., Pulle, J. S., Varala R., and Kotra V. (2023) Synthesis of phthalimide and naphthalimide derived Biginelli compounds and evaluation of their anti-inflammatory and anti-oxidant activities. Curr. Chem. Lett., 12, 249-256.
9. Pisal P. M., Sawant A. S., Kamble V. T., Varala R., Adil S. F., Khan M., and Siddiqui M. R. H. (2020) ZrCl4-catalyzed one-pot multi-component synthesis of hexahydropyrano pyrimidinone derivatives. Org. Commun., 13 28-32.
10. Raj V., and Lee J. (2020) 2H/4H-Chromenes-A versatile biologically attractive scaffold. Front. Chem., 8 623.
11. Chaudhary A., Singh K., Verma N., Kumar S., Kumar D., and Sharma P. P. (2022) Chromenes-A novel class of heterocyclic compounds: Recent advancements and future directions. Mini Rev. Med. Chem., 22 2736-2751.
12. Pratap R., and Ram V. J. (2014) Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem. Rev., 114 10476-10526.
13. Narayana V. R., Pudukulathan Z., and Varala R. (2013) SO42-/SnO2-Catalyzed efficient one-pot synthesis of 7,8-dihydro-2H-chromen-5-ones by formal [3+3] cycloaddition and 1,8-dioxo-octahydroxanthenes via a Knoevenagel condensation. Org. Commun., 6 110-119.
14. Merugu S., Ponnamaneni V. K., Varala R., Adil S. F., Khan M., Siddiqui M. R. H., and Vemula R. (2020) Metal-free catalyzed one-pot multicomponent synthesis of (E)-3-(2-((5-(benzylideneamino)-1,3,4-thiadiazol-2-yl) thio)acetyl)-2H-chromen-2-one derivatives and their biological evaluation. J. Chem., Article ID 4869279.
15. Kumar R., Raghuvanshi K., Verma R. K., and Singh M. S. (2010) Application of cyclic-1,3-diketones in domino and multicomponent reactions: Facile route to highly functionalized chromeno[2,3-d]pyrimidinones and diazabenzo[b]fluorenones under solvent-free conditions. Tetrahedron Lett., 51 5933-5936.
16. Bhattacharjee D., Sutradhar D., Chandra A. K., and Myrboh B. (2017) L-proline as an efficient asymmetric induction catalyst in the synthesis of chromeno[2,3-d]pyrimidine-triones, xanthenes in water. Tetrahedron., 73 3497-3504.
17. Kumari S., Kumar D., Gajaganti S., Srivastava V., and Singh, S. (2019) Sc(OTf)3 catalysed multicomponent synthesis of chromeno[2,3-d]pyrimidinetriones under solvent-free condition. Synth. Commun., 49 431-443.
18. Rai P., Sagir H., Kumar A., Yadav V. B., and Siddiqui I. R. (2018) Organocatalyzed synthesis of medicinally important chromeno[2, 3-d]pyrimidine-triones in biodegradable reaction medium. ChemistrySelect 3 2565-2570.
19. Ghahremanzadeh R., Fereshtehnejad F., and Bazgir A. (2010) Chromeno[2,3-d]pyrimidine-triones synthesis by a three-component coupling reaction. Chem. Pharm. Bull., 58 516-520.
20. Chaker A., Najahi E., Nepveu F., and Chabchou F. (2017) Microwave-assisted synthesis of chromeno[2,3-d] pyrimidinone derivatives. Arab. J. Chem., 10 S3040-S3047.
21. Alam M. M., Varala R., and Seema V. (2024) Zinc Acetate in organic synthesis and catalysis: A review. Min. Rev. Org. Chem., 21 555-587.
22. Babu H. B., Varala R., and Alam M. M. (2022) Zn(OAc)2.2H2O-Catalyzed Betti base synthesis under solvent free conditions. Lett. Org. Chem., 19 14-18. .
23. Reddy V. V. R., Saritha B., Ramu R., Varala R., and Jayashree, A. (2014) Zn(OAc)22H2O-catalyzed one-pot efficient synthesis of aminonitriles. Asian J. Chem., 26 7439-7442.
24. Ramu E., Varala R., Sreelatha N., and Adapa S. R. (2007) Zn(OAc)2·2H2O: A versatile catalyst for the one-pot synthesis of propargylamines. Tetrahedron Lett., 48 7184-7190.
25. Kokane B. D., Varala R., and Patil S. G. (2022) Zn(OAc)2·2H2O: An efficient catalyst for the one-pot synthesis of 2-substituted benzothiazoles. Org. Commun., 15 378-385.
26. Chinta B., Satyadev T. N. V. S. S., and Adilakshmi G. V. (2023) Zn(OAc)2•2H2O-catalyzed one-pot synthesis of divergently substituted imidazoles. Curr. Chem. Lett., 12 175-184.
27. Pulle J. S., Totawar P. R., and Varala R. (2023) Zn(OAc)2·2H2O-Catalyzed green synthesis of substituted 1-amido/thioamidoalkyl-2-naphthols. Rev. Roum. Chim., 68 75-83.
28. Tanaka K., and Toda F. (2000) Solvent-free organic synthesis. Chem. Rev., 100 1025-1074.
29. Zangade S., and Patil P. (2019) A review on solvent-free methods in organic synthesis. Curr. Org. Chem., 23 2295-2318.
30. Avila-Ortiz C. G., and Juaristi E. (2020) Novel methodologies for chemical activation in organic synthesis under solvent-free reaction conditions. Molecules 25 3579.
31. Gawande M. B., Bonifcio V. D. B., Luque R., Branco P. S., and Varma R. S. (2014) Solvent-free and catalysts-free chemistry: A benign pathway to sustainability. ChemSusChem., 7 24-44.
32. Dresler E. Wróblewska A., and Jasiński R. (2022) Understanding the regioselectivity and the molecular mechanism of [3+2] cycloaddition reactions between nitrous oxide and conjugated nitroalkenes: A DFT computational study. Molecules 27 8441.
33. Demydchuk B. A., Rusanov E. B., Rusanova, J. A., and Brovaretsa V. S. (2017) Regioselective synthesis of bicyclic 1,3,5-triazepine system starting from tetrachloro-2-aza-1,3-butadienes. Curr. Chem. Lett., 6 49-54.
34. Kemskyi S., Fedoriva M., Palamar A., Grozav A., Chornous V., Kutsyk R., Dorokhov V., and Vovk M. (2023) Synthesis and evaluation of antimicrobial activity of some new 3-(pyrrol-4-yl)acrylamide derivatives. Curr. Chem. Lett., 12 519-528.
35. Dresler E., Wróblewska A., and Jasiński R. (2023) Understanding the molecular mechanism of thermal and LA-catalysed Diels-Alder reactions between cyclopentadiene and isopropyl 3-nitroprop-2-enate. Molecules 28 5289.
36. Ponomarev G. V., Kirillova G. V., and Yashunsky D. V. (2000) Porphyrins. 38. Reaction of porphyrins containing hydroxy(alkoxy)ethyl or alkoxymethyl substituents with nucleophiles in the presence of zinc acetate. A novel, promising method for the modification of porphyrins on the periphery of the macrocycle. Chem. Heterocycl. Comp., 36 1044-1053.
37. Kula K., and Sadowski M. (2023) Regio- and stereoselectivity of [3+2] cycloaddition reactions between (Z)-1-(anthracen-9-yl)-N-methyl nitrone and analogs of trans-β-nitrostyrene on the basis of MEDT computational study. Chem. Heterocycl. Comp., 59 138-144.