How to cite this paper
Chinta, B., Chintalapudi, R & Satyadev, T. (2024). Sulfated Tin Oxide (STO)-Catalyzed Efficient Synthesis of 4-Aryl-NH-1,2,3-triazoles.Current Chemistry Letters, 13(4), 669-676.
Refrences
1. Nocua-Báez L. C., Uribe-Jerez P., Tarazona-Guaranga L., Robles R., and Cortés J. A. (2020) Azoles of then and now: a review. Rev. Chilena Infectol., 37(3) 219-230. 10.4067/s0716-10182020000300219
2. Shafiei M., Peyton L., Hashemzadeh M., and Foroumadi A. (2020) History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg Chem., 104 104240. https://doi.org/10.1016/j.bioorg.2020.104240
3. Gupta V. K., Sharma A. K., Sharma R., Diwan S., and Saini S. (2014) Azoles as effective antifungal agents: Trends, scope and relevance., 4(2) 82-92. 10.2174/221031550402141009095854
4. Devasia J., Nizam A., and Vasantha V. L. (2022) Azole-based antibacterial agents: A review on multistep synthesis strategies and biology. Polycycl. Aromat. Comp., 42(8) 5474-5495. https://doi.org/10.1080/10406638.2021.1938615
5. Vaishnani M. J., Bijani S., Rahamathulla M., Baldaniya L., Jain V., Thajudeen K. Y., and Pasha I. (2024) Biological importance and synthesis of 1,2,3-triazole derivatives: a review. Green Chem. Lett. Rev., 17(1) 2307989. https://doi.org/10.1080/17518253.2024.2307989
6. Vala D. P., Vala R. M., and Patel H. M. (2022) Versatile synthetic platform for 1,2,3-triazole chemistry. ACS Omega 7 36945-36987. https://doi.org/10.1021/acsomega.2c04883
7. Varala R., Bollikolla H. B., and Kurmarayuni C. M. (2021) Synthesis of pharmacological relevant 1,2,3-triazole and its analogues-A review. Curr. Org. Synth., 18(2) 101-124. https://doi.org/10.2174/1570179417666200914142229
8. Dai J., Tian S., Yang X., and Liu Z. (2022) Synthesis methods of 1,2,3-/1,2,4-triazoles: A review. Front. Chem., 10 891484. https://doi.org/10.3389/fchem.2022.891484
9. Zhang B. (2019) Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 168 357-372. https://doi.org/10.1016/j.ejmech.2019.02.055
10. Nemallapudi B. R., Guda D. R., Ummadi N., Avula B., Zyryanov G. V., Reddy C. S., and Gundala S. (2022) New methods for synthesis of 1,2,3-triazoles: A review. Polycycl. Aromat. Comp., 42(6) 3874-3892. https://doi.org/10.1080/10406638.2020.1866038
11. Sahu A., Sahu P., and Agrawal R. (2020) A recent review on drug modification using 1,2,3-triazole. 14(2) 71-87.
10.2174/2212796814999200807214519
12. De Nino A., Maiuolo L., Costanzo P., Algieri V., Jiritano A., Olivito F., and Tallarida M. A. (2021) Recent progress in catalytic synthesis of 1,2,3-triazoles. Catalysts 11 1120. https://doi.org/10.3390/catal11091120
13. Matin M. M., Matin P., Rahman M. R., Ben Hadda T., Almalki F. A., Mahmud S., Ghoneim M. M., Alruwaily M., and Alshehri S. (2022) Triazoles and their derivatives: Chemistry, synthesis, and therapeutic applications. Front. Mol. Biosci., 9 864286. https://doi.org/ 10.3389/fmolb.2022.864286
14. Kumar S., Khokra S. L., and Yadav A. (2021) Triazole analogues as potential pharmacological agents: a brief review. Futur J. Pharm. Sci., 7 106. https://doi.org/10.1186/s43094-021-00241-3
15. Todorov L., and Kostova I. (2023) 1,2,3-Triazoles and their metal chelates with antimicrobial activity. Front Chem., 11 1247805. https://doi.org/10.3389/fchem.2023.1247805
16. Hazarika P. K., Hazarika R., and Sarma D. (2024) Recent advances in metal free synthesis of N-unsubstituted 1,2,3-triazoles. Curr. Org. Synth., 21(1) 10-19. 10.2174/1570179420666230322155524
17. De Nino A., Merino P., Algieri V., Nardi M., Gioia M. L. D., Russo B., Tallarida M. A., and Maiuolo L. (2018) Synthesis of 1,5-functionalized 1,2,3-triazoles using ionic liquid/iron(III) chloride as an efficient and reusable homogeneous catalyst. Catalysts 8 364. https://doi.org/10.3390/catal8090364
18. Jankovi D., Virant M., and Gazvoda M. (2022) Copper-catalyzed azide-alkyne cycloaddition of hydrazoic acid formed in situ from sodium azide affords 4-monosubstituted-1,2,3-triazoles. J. Org. Chem., 87(6) 4018-4028. https://doi.org/10.1021/acs.joc.1c02775
19. Sharma P., Kumar N. P., Senwar K. R., Forero-Doria O., Nachtigall F. M., Santos L. S., and Shankaraiah, N. (2017) Effect of sulfamic acid on 1,3-dipolar cycloaddition reaction: Mechanistic studies and synthesis of 4-aryl-NH-1,2,3-triazoles from nitroolefins. J. Braz. Chem. Soc., 28(4) 589-597. http://dx.doi.org/10.21577/0103-5053.20160203
20. Mirzaei-Mosbat M., Ghorbani-Vaghei R., Sarmast N. (2019) One-pot synthesis of 4-Aryl-NH-1,2,3-triazoles in presence of Fe3O4@SiO2@propyl-HMTA as a new basic catalyst. ChemistrySelect 4(5) 1731-1737. https://doi.org/10.1002/slct.201803545
21. Hazarika P. K., Gogoi P., Hazarika R., Deori K., and Sarma D. (2022) Nanostructured Ni(OH)2-ZnO mixed crystals as recyclable catalysts for the synthesis of N-unsubstituted 1,2,3-triazoles. Mater. Adv., 3 7810-7814. https://doi.org/10.1039/D2MA00824F
22. Dresler E., Woliński P., Wróblewska A., and Jasiński R. (2023) On the question of zwitterionic intermediates in the [3+2] cycloaddition reactions between aryl azides and ethyl propiolate. Molecules 28 8152. https://doi.org/10.3390/molecules28248152
23. Jasiński R. (2015) Nitroacetylene as dipolarophile in [2 + 3] cycloaddition reactions with allenyl-type three-atom components: DFT computational study. Monatsh Chem., 146 591–599. https://doi.org/10.1007/s00706-014-1389-0
24. Yousfi Y., Benchouk W., and Mekelleche, S. M. (2023) Prediction of the regioselectivity of the ruthenium-catalyzed [3+2] cycloadditions of benzyl azide with internal alkynes using conceptual DFT indices of reactivity. Chem. Heterocycl. Comp., 59 118-127. https://doi.org/10.1007/s10593-023-03173-3
25. Quan X-J., Ren Z-H., Wang Y-Y., and Guan Z-H. (2014) p Toluenesulfonic acid mediated 1,3-dipolar cycloaddition of nitroolefins with NaN3 for synthesis of 4 aryl-NH-1,2,3-triazoles. Org. Lett., 16(21) 5728-5731. https://doi.org/10.1021/ol5027975
26. Zhang H., Dong D-Q., and Wang Z-L. (2016) Direct synthesis of N-unsubstituted 4-aryl-1,2,3-triazoles mediated by Amberlyst-15. Synthesis 48 131-135. https://doi.org/10.1055/s-0035-1560488
27. Vergara-Arenas I., Lomas-Romero L., Ángeles-Beltrán D., Negrón-Silva G. E., Gutiérrez-Carrillo A., Lara V. H., and Morales-Serna J. A. (2017) Multicomponent synthesis of 4-aryl-NH-1,2,3-triazoles in the presence of Al-MCM-41 and sulfated zirconia. Tetrahedron Lett., 58(28) 2690-2694. https://doi.org/10.1016/j.tetlet.2017.05.055
28. Hui R-R., Zhao M-N., Chen M., Ren Z-H., and Guan Z-H. (2017) One-pot synthesis of 4-aryl-NH-1,2,3-triazoles through three-component reaction of aldehydes, nitroalkanes and NaN3. Chin. J. Chem., 35(12) 1808-1812. https://doi.org/10.1002/cjoc.201700367
29. Wu L., Wang X., Chen Y., Huang Q., Lin Q., and Wu M. (2016) 4-Aryl-NH-1,2,3-triazoles via multicomponent reaction of aldehydes, nitroalkanes, and sodium azide. Synlett 27 437-441. https://doi.org/10.1055/s-0035-1560528
30. Hu Q., Liu Y., Deng X., Li Y., and Chen Y. (2016) Aluminium(III) chloride catalyzed three-component condensation of aromatic aldehydes, nitroalkanes and sodium azide for the synthesis of 4-aryl-NH-1,2,3-triazoles. Adv. Synth. Catal., 358 1689-1693. https://doi.org/10.1002/adsc.201600098
31. Vogt C., and Weckhuysen B. M. (2022) The concept of active site in heterogeneous catalysis. Nat. Rev. Chem., 6 89-111. https://doi.org/10.1038/s41570-021-00340-y
32. Yong X., Muhan C., and Qiao Z. (2021) Recent advances and perspective on heterogeneous catalysis using metals and oxide nanocrystals. Mater. Chem. Front., 5 151-222. https://doi.org/10.1039/D0QM00549E
33. Hu X., and Yip A. C. K. (2021) Heterogeneous catalysis: Enabling a sustainable future. Front. Catal., 1 667675. https://doi.org/10.3389/fctls.2021.667675
34. Israf U. D., Nasir Q., Garba M. D., Alharthi A. I., Alotaibi M. A., and Usman M. (2022) A review of preparation methods for heterogeneous catalysts. Mini Rev. Org. Chem., 19(1) 92-110. https://doi.org/10.2174/1570193X18666210308151136
35. Dubasi N., and Varala R. (2022) Applications of sulfated tin oxide (STO) in organic synthesis-From 2016 to 2021. Heterocycles 104(5) 843-853. https://doi.org/10.3987/REV-22-978
36. Varala R., Narayana V. R., Kulakarni S. R., Khan M., Alwarthan A., and Adil S. F. (2016) Sulfated tin oxide (STO)-Structural properties and application in catalysis: A review. Arabian J. Chem., 9(4) 550-573. https://doi.org/10.1016/j.arabjc.2016.02.015
37. Koduri R. G., Pagadala R., Boodida S., and Varala R. (2022) Ultrasound promoted synthesis of 2-amino-4H-pyranoquinolines using sulphated tin oxide as a catalyst. Polycycl. Aromat. Compd., 42(10) 6908-6916. https://doi.org/10.1080/10406638.2021.1992456
38. Chandane W., Gajare S., Kagne R., Kukade M., Pawar A., Rashinkar G., and Tamhankar B. (2022) Sulfated tin oxide (SO4-2/SnO2): an efficient heterogeneous solid superacid catalyst for the facile synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Res. Chem. Intermed., 48 1439-1456. https://doi.org/10.1007/s11164-022-04670-4
39. Ashine F., Balakrishnan S., Kiflie Z., and Tizazu B. Z. (2023) Epoxidation of Argemone mexicana oil with peroxyacetic acid formed in-situ using sulfated tin (IV) oxide catalyst: Characterization; kinetic and thermodynamic analysis. Heliyon 9(1) e12817. https://doi.org/10.1016/j.heliyon.2023.e12817
40. Totawar P. R., Varala R., Kotra, V., and Pulle J. S. (2023) Synthesis of phthalimide and naphthalimide derived Biginelli compounds and evaluation of their anti-inflammatory and anti-oxidant activities. Curr. Chem. Lett., 12 249-256. https://doi.org/10.5267/j.ccl.2023.1.004
41. Koduri R. G., Pagadala R., Varala R., and Boodida S. (2021) An effective process for the synthesis of dihydropyridines via SO4-2/SnO2-catalyzed Hantzsch reaction. J. Chin. Chem. Soc., 68(2) 333-337. https://doi.org/10.1002/jccs.202000264.
42. Koduri R. G., Pagadala R., Boodida S., and Varala R. (2020) SO4-2/SnO2-catalyzed cyclocondensation for the synthesis of fully functionalized pyridines. J. Heterocycl. Chem., 57(2) 923-928. https://doi.org/10.1002/jhet.3806
43. Narayana V., Varala R., and Zubaidha P. (2012) SO4-2/SnO2-Catalyzed C3-alkylation of 4-hydroxycoumarin with secondary benzyl alcohols and O-alkylation with O-acetyl compounds. Int. J. Org. Chem., 2(3A) 287-294. https://doi.org/10.4236/ijoc.2012.223039
44. Narayana V., Zubaidha P., and Varala R. (2013) SO4-2/SnO2-Catalyzed efficient one-pot synthesis of 7,8-dihydro-2H-chromen-5-ones by formal [3+3] cycloaddition and 1, 8-dioxo-octahydroxanthenes via a Knoevenagel condensation. Org. Commun., 6(3) 110-119.
45. Rama Krishna C., Seetharam K. A., and Satyadev T. N. V. S. S. (2024) Synthesis of β-amino alcohols by ring opening of epoxides with amines catalyzed by sulfated tin oxide under mild and solvent-free conditions. Curr. Chem. Lett., 13 343-350. http://doi.org/10.5267/j.ccl.2023.11.004
46. Chinta B., Satyadev T. N. V. S. S., and Adilakshmi G. V. (2023) Zn(OAc)2•2H2O-catalyzed one-pot synthesis of divergently substituted imidazoles. Curr. Chem. Lett., 12 175-184. https://doi.org/10.5267/j.ccl.2022.8.007
47. Satyadev T. N. V. S. S., Chinta B., and Gaddaguti V. A. (2023) An efficient zinc acetate dihydrate-catalyzed green protocol for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Org. Commun., 16(2) 117-124. http://doi.org/10.25135/acg.oc.149.2303.2742
48. Fioravanti S., Pellacani L., Tardella P. A., and Vergari M. C. (2008) Facile and highly stereoselective one-pot synthesis of either (E)- or (Z)-nitro alkenes. Org. Lett., 10 1449-1451. http://doi.org/10.1021/ol800224k
49. Dresler E., Wróblewska A., and Jasiński R. (2023) Understanding the molecular mechanism of thermal and LA-catalysed Diels-Alder reactions between cyclopentadiene and isopropyl 3-nitroprop-2-enate. Molecules 28 5289. https://doi.org/10.3390/molecules28145289
50. Kula K., Łapczuk A., Sadowski M., Kras J., Zawadzińska K., Demchuk O. M., Gaurav G. K., Wróblewska A., and Jasiński R. (2022) On the question of the formation of nitro-functionalized 2,4-pyrazole analogs on the basis of nitrylimine molecular systems and 3,3,3-trichloro-1-nitroprop-1-ene. Molecules 27 8409. https://doi.org/10.3390/molecules27238409
51. Dresler E., Wróblewska A., and Jasiński R. (2022) Understanding the regioselectivity and the molecular mechanism of [3+2] cycloaddition reactions between nitrous oxide and conjugated nitroalkenes: A DFT computational study. Molecules 27 8441. https://doi.org/10.3390/molecules27238441
52. Zawadzińska K., Gadocha Z., Pabian K., Wróblewska A., Wielgus E., and Jasiński R. (2022) The first examples of [3+2] cycloadditions with the participation of (E)-3,3,3-tribromo-1-nitroprop-1-ene. Materials 15 7584. https://doi.org/10.3390/ma15217584
53. Jasiński R. (2015) In the searching for zwitterionic intermediates on reaction paths of [3+2] cycloaddition reactions between 2,2,4,4-tetramethyl-3-thiocyclobutanone S-methylide and polymerizable olefins. RSC Adv., 5 101045-101048. https://doi.org/10.1039/C5RA20747A
54. Jasiński R., Mróz K., and Kącka A. (2016) Experimental and theoretical DFT study on synthesis of sterically crowded 2,3,3,(4)5-tetrasubstituted-4-nitroisoxazolidines via 1,3-dipolar cycloaddition reactions between ketonitrones and conjugated nitroalkenes. J. Heterocycl. Chem., 53 1424-1429. https://doi.org/10.1002/jhet.2442
55. Jasiński R., Żmigrodzka M., Dresler E., and Kula K. (2017) A full regioselective and stereoselective synthesis of 4-nitroisoxazolidines via stepwise [3+2] cycloaddition reactions between (Z)-C-(9-anthryl)-N-arylnitrones and (E)-3,3,3-trichloro-1-nitroprop-1-ene: Comprehensive experimental and theoretical study. J. Heterocycl. Chem., 54 3314-3320. https://doi.org/10.1002/jhet.2951
56. Jasiński R., Kula K., Kącka A., and Miroslaw B. (2017) Unexpected course of reaction between (E)-2-aryl-1-cyano-1-nitroethenes and diazafluorene: why is there no 1,3-dipolar cycloaddition?. Monatsh. Chem., 148 909-915. https://doi.org/10.1007/s00706-016-1893-5
57. Jasiński R. (2018) Competition between one-step and two-step mechanism in polar [3+2] cycloadditions of (Z)-C-(3,4,5-trimethoxyphenyl)-N-methyl-nitrone with (Z)-2-EWG-1-bromo-1-nitroethenes. Comput. Theor. Chemia., 1125 77-85. https://doi.org/10.1016/j.comptc.2018.01.009
58. Kula K., Dobosz J., Jasiński R., Kącka-Zych A., Łapczuk-Krygier A., Mirosław B., and Demchuk O. M. (2020) [3+2] Cycloaddition of diaryldiazomethanes with (E)-3,3,3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct., 1203 127473. https://doi.org/10.1016/j.molstruc.2019.127473
59. Jasiński R. (2023) On the question of selective protocol for the preparation of juglone via (4+2) cycloaddition involving 3-hydroxypyridazine: DFT mechanistic study. Chem. Heterocycl. Comp., 59 179-182. https://doi.org/10.1007/s10593-023-03180-4
60. Łapczuk-Krygier A., Jaśkowska J., and Jasiński R. (2018) The influence of Lewis acid catalyst on the kinetic and molecular mechanism of nitrous acid elimination from 5-nitro-3-phenyl-4,5-dihydroisoxazole: DFT computational study. Chem. Heterocycl. Comp., 54 1172-1174. https://doi.org/10.1007/s10593-019-02410-y
61. Kącka-Zych A., Domingo L. R.,Ríos-Gutiérrez, M., and Jasiński R. (2017) Understanding the mechanism of the decomposition reaction of nitroethyl benzoate through the molecular electron density theory. Theor. Chem. Acc., 136 129. https://doi.org/10.1007/s00214-017-2161-4
62. Kącka A. B., and Jasiński R. A. (2016) A density functional theory mechanistic study of thermal decomposition reactions of nitroethyl carboxylates: undermine of “pericyclic” insight. Heteroatom Chem., 27 279-289. https://doi.org/10.1002/hc.21326
2. Shafiei M., Peyton L., Hashemzadeh M., and Foroumadi A. (2020) History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg Chem., 104 104240. https://doi.org/10.1016/j.bioorg.2020.104240
3. Gupta V. K., Sharma A. K., Sharma R., Diwan S., and Saini S. (2014) Azoles as effective antifungal agents: Trends, scope and relevance., 4(2) 82-92. 10.2174/221031550402141009095854
4. Devasia J., Nizam A., and Vasantha V. L. (2022) Azole-based antibacterial agents: A review on multistep synthesis strategies and biology. Polycycl. Aromat. Comp., 42(8) 5474-5495. https://doi.org/10.1080/10406638.2021.1938615
5. Vaishnani M. J., Bijani S., Rahamathulla M., Baldaniya L., Jain V., Thajudeen K. Y., and Pasha I. (2024) Biological importance and synthesis of 1,2,3-triazole derivatives: a review. Green Chem. Lett. Rev., 17(1) 2307989. https://doi.org/10.1080/17518253.2024.2307989
6. Vala D. P., Vala R. M., and Patel H. M. (2022) Versatile synthetic platform for 1,2,3-triazole chemistry. ACS Omega 7 36945-36987. https://doi.org/10.1021/acsomega.2c04883
7. Varala R., Bollikolla H. B., and Kurmarayuni C. M. (2021) Synthesis of pharmacological relevant 1,2,3-triazole and its analogues-A review. Curr. Org. Synth., 18(2) 101-124. https://doi.org/10.2174/1570179417666200914142229
8. Dai J., Tian S., Yang X., and Liu Z. (2022) Synthesis methods of 1,2,3-/1,2,4-triazoles: A review. Front. Chem., 10 891484. https://doi.org/10.3389/fchem.2022.891484
9. Zhang B. (2019) Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 168 357-372. https://doi.org/10.1016/j.ejmech.2019.02.055
10. Nemallapudi B. R., Guda D. R., Ummadi N., Avula B., Zyryanov G. V., Reddy C. S., and Gundala S. (2022) New methods for synthesis of 1,2,3-triazoles: A review. Polycycl. Aromat. Comp., 42(6) 3874-3892. https://doi.org/10.1080/10406638.2020.1866038
11. Sahu A., Sahu P., and Agrawal R. (2020) A recent review on drug modification using 1,2,3-triazole. 14(2) 71-87.
10.2174/2212796814999200807214519
12. De Nino A., Maiuolo L., Costanzo P., Algieri V., Jiritano A., Olivito F., and Tallarida M. A. (2021) Recent progress in catalytic synthesis of 1,2,3-triazoles. Catalysts 11 1120. https://doi.org/10.3390/catal11091120
13. Matin M. M., Matin P., Rahman M. R., Ben Hadda T., Almalki F. A., Mahmud S., Ghoneim M. M., Alruwaily M., and Alshehri S. (2022) Triazoles and their derivatives: Chemistry, synthesis, and therapeutic applications. Front. Mol. Biosci., 9 864286. https://doi.org/ 10.3389/fmolb.2022.864286
14. Kumar S., Khokra S. L., and Yadav A. (2021) Triazole analogues as potential pharmacological agents: a brief review. Futur J. Pharm. Sci., 7 106. https://doi.org/10.1186/s43094-021-00241-3
15. Todorov L., and Kostova I. (2023) 1,2,3-Triazoles and their metal chelates with antimicrobial activity. Front Chem., 11 1247805. https://doi.org/10.3389/fchem.2023.1247805
16. Hazarika P. K., Hazarika R., and Sarma D. (2024) Recent advances in metal free synthesis of N-unsubstituted 1,2,3-triazoles. Curr. Org. Synth., 21(1) 10-19. 10.2174/1570179420666230322155524
17. De Nino A., Merino P., Algieri V., Nardi M., Gioia M. L. D., Russo B., Tallarida M. A., and Maiuolo L. (2018) Synthesis of 1,5-functionalized 1,2,3-triazoles using ionic liquid/iron(III) chloride as an efficient and reusable homogeneous catalyst. Catalysts 8 364. https://doi.org/10.3390/catal8090364
18. Jankovi D., Virant M., and Gazvoda M. (2022) Copper-catalyzed azide-alkyne cycloaddition of hydrazoic acid formed in situ from sodium azide affords 4-monosubstituted-1,2,3-triazoles. J. Org. Chem., 87(6) 4018-4028. https://doi.org/10.1021/acs.joc.1c02775
19. Sharma P., Kumar N. P., Senwar K. R., Forero-Doria O., Nachtigall F. M., Santos L. S., and Shankaraiah, N. (2017) Effect of sulfamic acid on 1,3-dipolar cycloaddition reaction: Mechanistic studies and synthesis of 4-aryl-NH-1,2,3-triazoles from nitroolefins. J. Braz. Chem. Soc., 28(4) 589-597. http://dx.doi.org/10.21577/0103-5053.20160203
20. Mirzaei-Mosbat M., Ghorbani-Vaghei R., Sarmast N. (2019) One-pot synthesis of 4-Aryl-NH-1,2,3-triazoles in presence of Fe3O4@SiO2@propyl-HMTA as a new basic catalyst. ChemistrySelect 4(5) 1731-1737. https://doi.org/10.1002/slct.201803545
21. Hazarika P. K., Gogoi P., Hazarika R., Deori K., and Sarma D. (2022) Nanostructured Ni(OH)2-ZnO mixed crystals as recyclable catalysts for the synthesis of N-unsubstituted 1,2,3-triazoles. Mater. Adv., 3 7810-7814. https://doi.org/10.1039/D2MA00824F
22. Dresler E., Woliński P., Wróblewska A., and Jasiński R. (2023) On the question of zwitterionic intermediates in the [3+2] cycloaddition reactions between aryl azides and ethyl propiolate. Molecules 28 8152. https://doi.org/10.3390/molecules28248152
23. Jasiński R. (2015) Nitroacetylene as dipolarophile in [2 + 3] cycloaddition reactions with allenyl-type three-atom components: DFT computational study. Monatsh Chem., 146 591–599. https://doi.org/10.1007/s00706-014-1389-0
24. Yousfi Y., Benchouk W., and Mekelleche, S. M. (2023) Prediction of the regioselectivity of the ruthenium-catalyzed [3+2] cycloadditions of benzyl azide with internal alkynes using conceptual DFT indices of reactivity. Chem. Heterocycl. Comp., 59 118-127. https://doi.org/10.1007/s10593-023-03173-3
25. Quan X-J., Ren Z-H., Wang Y-Y., and Guan Z-H. (2014) p Toluenesulfonic acid mediated 1,3-dipolar cycloaddition of nitroolefins with NaN3 for synthesis of 4 aryl-NH-1,2,3-triazoles. Org. Lett., 16(21) 5728-5731. https://doi.org/10.1021/ol5027975
26. Zhang H., Dong D-Q., and Wang Z-L. (2016) Direct synthesis of N-unsubstituted 4-aryl-1,2,3-triazoles mediated by Amberlyst-15. Synthesis 48 131-135. https://doi.org/10.1055/s-0035-1560488
27. Vergara-Arenas I., Lomas-Romero L., Ángeles-Beltrán D., Negrón-Silva G. E., Gutiérrez-Carrillo A., Lara V. H., and Morales-Serna J. A. (2017) Multicomponent synthesis of 4-aryl-NH-1,2,3-triazoles in the presence of Al-MCM-41 and sulfated zirconia. Tetrahedron Lett., 58(28) 2690-2694. https://doi.org/10.1016/j.tetlet.2017.05.055
28. Hui R-R., Zhao M-N., Chen M., Ren Z-H., and Guan Z-H. (2017) One-pot synthesis of 4-aryl-NH-1,2,3-triazoles through three-component reaction of aldehydes, nitroalkanes and NaN3. Chin. J. Chem., 35(12) 1808-1812. https://doi.org/10.1002/cjoc.201700367
29. Wu L., Wang X., Chen Y., Huang Q., Lin Q., and Wu M. (2016) 4-Aryl-NH-1,2,3-triazoles via multicomponent reaction of aldehydes, nitroalkanes, and sodium azide. Synlett 27 437-441. https://doi.org/10.1055/s-0035-1560528
30. Hu Q., Liu Y., Deng X., Li Y., and Chen Y. (2016) Aluminium(III) chloride catalyzed three-component condensation of aromatic aldehydes, nitroalkanes and sodium azide for the synthesis of 4-aryl-NH-1,2,3-triazoles. Adv. Synth. Catal., 358 1689-1693. https://doi.org/10.1002/adsc.201600098
31. Vogt C., and Weckhuysen B. M. (2022) The concept of active site in heterogeneous catalysis. Nat. Rev. Chem., 6 89-111. https://doi.org/10.1038/s41570-021-00340-y
32. Yong X., Muhan C., and Qiao Z. (2021) Recent advances and perspective on heterogeneous catalysis using metals and oxide nanocrystals. Mater. Chem. Front., 5 151-222. https://doi.org/10.1039/D0QM00549E
33. Hu X., and Yip A. C. K. (2021) Heterogeneous catalysis: Enabling a sustainable future. Front. Catal., 1 667675. https://doi.org/10.3389/fctls.2021.667675
34. Israf U. D., Nasir Q., Garba M. D., Alharthi A. I., Alotaibi M. A., and Usman M. (2022) A review of preparation methods for heterogeneous catalysts. Mini Rev. Org. Chem., 19(1) 92-110. https://doi.org/10.2174/1570193X18666210308151136
35. Dubasi N., and Varala R. (2022) Applications of sulfated tin oxide (STO) in organic synthesis-From 2016 to 2021. Heterocycles 104(5) 843-853. https://doi.org/10.3987/REV-22-978
36. Varala R., Narayana V. R., Kulakarni S. R., Khan M., Alwarthan A., and Adil S. F. (2016) Sulfated tin oxide (STO)-Structural properties and application in catalysis: A review. Arabian J. Chem., 9(4) 550-573. https://doi.org/10.1016/j.arabjc.2016.02.015
37. Koduri R. G., Pagadala R., Boodida S., and Varala R. (2022) Ultrasound promoted synthesis of 2-amino-4H-pyranoquinolines using sulphated tin oxide as a catalyst. Polycycl. Aromat. Compd., 42(10) 6908-6916. https://doi.org/10.1080/10406638.2021.1992456
38. Chandane W., Gajare S., Kagne R., Kukade M., Pawar A., Rashinkar G., and Tamhankar B. (2022) Sulfated tin oxide (SO4-2/SnO2): an efficient heterogeneous solid superacid catalyst for the facile synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Res. Chem. Intermed., 48 1439-1456. https://doi.org/10.1007/s11164-022-04670-4
39. Ashine F., Balakrishnan S., Kiflie Z., and Tizazu B. Z. (2023) Epoxidation of Argemone mexicana oil with peroxyacetic acid formed in-situ using sulfated tin (IV) oxide catalyst: Characterization; kinetic and thermodynamic analysis. Heliyon 9(1) e12817. https://doi.org/10.1016/j.heliyon.2023.e12817
40. Totawar P. R., Varala R., Kotra, V., and Pulle J. S. (2023) Synthesis of phthalimide and naphthalimide derived Biginelli compounds and evaluation of their anti-inflammatory and anti-oxidant activities. Curr. Chem. Lett., 12 249-256. https://doi.org/10.5267/j.ccl.2023.1.004
41. Koduri R. G., Pagadala R., Varala R., and Boodida S. (2021) An effective process for the synthesis of dihydropyridines via SO4-2/SnO2-catalyzed Hantzsch reaction. J. Chin. Chem. Soc., 68(2) 333-337. https://doi.org/10.1002/jccs.202000264.
42. Koduri R. G., Pagadala R., Boodida S., and Varala R. (2020) SO4-2/SnO2-catalyzed cyclocondensation for the synthesis of fully functionalized pyridines. J. Heterocycl. Chem., 57(2) 923-928. https://doi.org/10.1002/jhet.3806
43. Narayana V., Varala R., and Zubaidha P. (2012) SO4-2/SnO2-Catalyzed C3-alkylation of 4-hydroxycoumarin with secondary benzyl alcohols and O-alkylation with O-acetyl compounds. Int. J. Org. Chem., 2(3A) 287-294. https://doi.org/10.4236/ijoc.2012.223039
44. Narayana V., Zubaidha P., and Varala R. (2013) SO4-2/SnO2-Catalyzed efficient one-pot synthesis of 7,8-dihydro-2H-chromen-5-ones by formal [3+3] cycloaddition and 1, 8-dioxo-octahydroxanthenes via a Knoevenagel condensation. Org. Commun., 6(3) 110-119.
45. Rama Krishna C., Seetharam K. A., and Satyadev T. N. V. S. S. (2024) Synthesis of β-amino alcohols by ring opening of epoxides with amines catalyzed by sulfated tin oxide under mild and solvent-free conditions. Curr. Chem. Lett., 13 343-350. http://doi.org/10.5267/j.ccl.2023.11.004
46. Chinta B., Satyadev T. N. V. S. S., and Adilakshmi G. V. (2023) Zn(OAc)2•2H2O-catalyzed one-pot synthesis of divergently substituted imidazoles. Curr. Chem. Lett., 12 175-184. https://doi.org/10.5267/j.ccl.2022.8.007
47. Satyadev T. N. V. S. S., Chinta B., and Gaddaguti V. A. (2023) An efficient zinc acetate dihydrate-catalyzed green protocol for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Org. Commun., 16(2) 117-124. http://doi.org/10.25135/acg.oc.149.2303.2742
48. Fioravanti S., Pellacani L., Tardella P. A., and Vergari M. C. (2008) Facile and highly stereoselective one-pot synthesis of either (E)- or (Z)-nitro alkenes. Org. Lett., 10 1449-1451. http://doi.org/10.1021/ol800224k
49. Dresler E., Wróblewska A., and Jasiński R. (2023) Understanding the molecular mechanism of thermal and LA-catalysed Diels-Alder reactions between cyclopentadiene and isopropyl 3-nitroprop-2-enate. Molecules 28 5289. https://doi.org/10.3390/molecules28145289
50. Kula K., Łapczuk A., Sadowski M., Kras J., Zawadzińska K., Demchuk O. M., Gaurav G. K., Wróblewska A., and Jasiński R. (2022) On the question of the formation of nitro-functionalized 2,4-pyrazole analogs on the basis of nitrylimine molecular systems and 3,3,3-trichloro-1-nitroprop-1-ene. Molecules 27 8409. https://doi.org/10.3390/molecules27238409
51. Dresler E., Wróblewska A., and Jasiński R. (2022) Understanding the regioselectivity and the molecular mechanism of [3+2] cycloaddition reactions between nitrous oxide and conjugated nitroalkenes: A DFT computational study. Molecules 27 8441. https://doi.org/10.3390/molecules27238441
52. Zawadzińska K., Gadocha Z., Pabian K., Wróblewska A., Wielgus E., and Jasiński R. (2022) The first examples of [3+2] cycloadditions with the participation of (E)-3,3,3-tribromo-1-nitroprop-1-ene. Materials 15 7584. https://doi.org/10.3390/ma15217584
53. Jasiński R. (2015) In the searching for zwitterionic intermediates on reaction paths of [3+2] cycloaddition reactions between 2,2,4,4-tetramethyl-3-thiocyclobutanone S-methylide and polymerizable olefins. RSC Adv., 5 101045-101048. https://doi.org/10.1039/C5RA20747A
54. Jasiński R., Mróz K., and Kącka A. (2016) Experimental and theoretical DFT study on synthesis of sterically crowded 2,3,3,(4)5-tetrasubstituted-4-nitroisoxazolidines via 1,3-dipolar cycloaddition reactions between ketonitrones and conjugated nitroalkenes. J. Heterocycl. Chem., 53 1424-1429. https://doi.org/10.1002/jhet.2442
55. Jasiński R., Żmigrodzka M., Dresler E., and Kula K. (2017) A full regioselective and stereoselective synthesis of 4-nitroisoxazolidines via stepwise [3+2] cycloaddition reactions between (Z)-C-(9-anthryl)-N-arylnitrones and (E)-3,3,3-trichloro-1-nitroprop-1-ene: Comprehensive experimental and theoretical study. J. Heterocycl. Chem., 54 3314-3320. https://doi.org/10.1002/jhet.2951
56. Jasiński R., Kula K., Kącka A., and Miroslaw B. (2017) Unexpected course of reaction between (E)-2-aryl-1-cyano-1-nitroethenes and diazafluorene: why is there no 1,3-dipolar cycloaddition?. Monatsh. Chem., 148 909-915. https://doi.org/10.1007/s00706-016-1893-5
57. Jasiński R. (2018) Competition between one-step and two-step mechanism in polar [3+2] cycloadditions of (Z)-C-(3,4,5-trimethoxyphenyl)-N-methyl-nitrone with (Z)-2-EWG-1-bromo-1-nitroethenes. Comput. Theor. Chemia., 1125 77-85. https://doi.org/10.1016/j.comptc.2018.01.009
58. Kula K., Dobosz J., Jasiński R., Kącka-Zych A., Łapczuk-Krygier A., Mirosław B., and Demchuk O. M. (2020) [3+2] Cycloaddition of diaryldiazomethanes with (E)-3,3,3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct., 1203 127473. https://doi.org/10.1016/j.molstruc.2019.127473
59. Jasiński R. (2023) On the question of selective protocol for the preparation of juglone via (4+2) cycloaddition involving 3-hydroxypyridazine: DFT mechanistic study. Chem. Heterocycl. Comp., 59 179-182. https://doi.org/10.1007/s10593-023-03180-4
60. Łapczuk-Krygier A., Jaśkowska J., and Jasiński R. (2018) The influence of Lewis acid catalyst on the kinetic and molecular mechanism of nitrous acid elimination from 5-nitro-3-phenyl-4,5-dihydroisoxazole: DFT computational study. Chem. Heterocycl. Comp., 54 1172-1174. https://doi.org/10.1007/s10593-019-02410-y
61. Kącka-Zych A., Domingo L. R.,Ríos-Gutiérrez, M., and Jasiński R. (2017) Understanding the mechanism of the decomposition reaction of nitroethyl benzoate through the molecular electron density theory. Theor. Chem. Acc., 136 129. https://doi.org/10.1007/s00214-017-2161-4
62. Kącka A. B., and Jasiński R. A. (2016) A density functional theory mechanistic study of thermal decomposition reactions of nitroethyl carboxylates: undermine of “pericyclic” insight. Heteroatom Chem., 27 279-289. https://doi.org/10.1002/hc.21326