How to cite this paper
Udhayakumari, D. (2024). Recognition of trivalent analytes using simple organic chromogenic and fluorogenic probes: A review.Current Chemistry Letters, 13(4), 655-668.
Refrences
1. Wu D., Sedgwick A.C., Gunnlaugsson T., Akkaya E.U., Yoon J., James T.D. (2017) Fluorescent chemosensors: the past, present and future. Chem. Soc. Rev. 46, 7105-7123. https://doi.org/10.1039/C7CS00240H.
2. Upadhyay S., Singh A., Sinha R., Omer S., Negi K. (2019) Colorimetric chemosensors for d-metal ions: A review in the past, present and future prospect. J. Mol. Strut. 1193, 89-102. https://doi.org/10.1016/j.molstruc.2019.05.007.
3. Fukuhara G. (2020) Analytical supramolecular chemistry: Colorimetric and fluorimetric chemosensors, J. Photochem. Photobiol. C: Photochem. Rev. 42, 100340. https://doi.org/10.1016/j.jphotochemrev.2020.100340.
4. Alharbi K.H. (2023) A Review on Organic Colorimetric and Fluorescent Chemosensors for the Detection of Zn(II) Ions, Anal. Chem. 53, 1472-1488. https://doi.org/10.1080/10408347.2022.2033611.
5. Khan S., Chen X., Almahri A., Allehyani E.S., Alhumaydhi F.A., Ibrahim M.M., Ali S. (2021) Recent developments in fluorescent and colorimetric chemosensors based on schiff bases for metallic cations detection: A review, J. Environ. Chem. Eng. 9, 106381. https://doi.org/10.1016/j.jece.2021.106381.
6. Mohan B., Noushija M.K., Shanmugaraja S. (2022) Amino-1,8-naphthalimide-based fluorescent chemosensors for Zn(II) ion, Tetrahedron Lett. 109, 154155. https://doi.org/10.1016/j.tetlet.2022.154155.
7. Khan S., Chen X., Almahri A., Allehyani E. S., Alhumaydhi F. A., Ibrahim M. M., Ali A. (2021) Recent developments in fluorescent and colorimetric chemosensors based on schiff bases for metallic cations detection: A review, J. Environ. Chem. Engg. 9, 106381. https://doi.org/10.1016/j.jece.2021.106381.
8. Prabakaran G., Immanuel David C., Nandhakumar R. (2023) A review on pyrene based chemosensors for the specific detection on d-transition metal ions and their various applications, J. Environ. Che. Eng. 11, 109701. https://doi.org/10.1016/j.jece.2023.109701.
9. Liu X., Wang Y., Liu J., Tian J., Fei X. (2023) A high performance 2-hydroxynaphthalene acylhydrazone fluorescent chemosensor for detection of Al3+ ions through ESIPT and PET signalling mechanism, J. Cluster. Sci. 34, 813–822. https://doi.org/10.1007/s10876-022-02258-x.
10. Sivaraman G., Iniya M., Anand T., Kotla N. G., Sunnapu O., Singaravadivel S., Gulyan A., Chellappa D. (2018) Chemically diverse small molecule fluorescent chemosensors for copper ion. Coor. Chem. Rev. 357, 50-104. https://doi.org/10.1016/j.ccr.2017.11.020.
11. Woliński P., Kącka-Zych A., Wróblewska A., Wielgus E., Dolot R., Jasiński R. (2023) Fully Selective Synthesis of Spirocyclic-1,2-oxazine N Oxides via Non-Catalysed Hetero Diels-Alder Reactions with the Participation of Cyanofunctionalysed Conjugated Nitroalkenes, Molecules. 28, 4586. https://doi.org/10.3390/molecules28124586.
12. Kula K., Łapczuk A., Sadowski M., Kras J., Zawadzińska K., Demchuk O.M., Gaurav G.K., Wróblewska A., Jasiński R. (2022) On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene, Molecules. 27, 8409. https://doi.org/10.3390/molecules27238409.
13. Zawadzińska K., Gadocha Z., Pabian K., Wróblewska A., Wielgus E., Jasiński R. (2022) The First Examples of [3+2] Cycloadditions with the Participation of (E)-3,3,3-Tribromo-1-Nitroprop-1-Ene. Materials. 15, 7584. https://doi.org/10.3390/ma15217584.
14. Kuzu B., Tan M., Ekmekci Z., Menges N. (2017) A novel fluorescent sensor based on imidazole derivative for Fe3+ ions, J. Lumin. 192, 1096-1103. https://doi.org/10.1016/j.jlumin.2017.08.057.
15. Prakash S.M., Jayamoorthy K., Srinivasan N., Dhanalekshmi K.I. (2016) Fluorescence tuning of 2-(1H-Benzimidazol-2-yl)phenol - ESIPT process, J. Lumin. 172, 304-308. http://dx.doi.org/10.1016/j.jlumin.2015.12.009.
16. Zhang B., Liu H., Wu F., Hao G., Chen Y., Tan C., Tan Y., Jiang Y. (2017) A dual-response quinoline-based fluorescent sensor for the detection of Copper (II) and Iron(III) ions in aqueous medium, Sens. Actuators B: Chem. 243, 765-774. https://doi.org/10.1016/j.snb.2016.12.067.
17. Wang W., Wei J., Liu H., Liu Q., Gao Y. (2017) A novel colorimetric chemosensor based on quinoline for the sequential detection of Fe3+ and PPi in aqueous solution, Tetrahedron Lett. 58, 1025-1029. http://dx.doi.org/10.1016/j.tetlet.2017.01.010.
18. Wang Z., Wang H., Meng T., Hao E., Jiao L. (2017) Synthetically simple, click-generated quinoline-based Fe3+ sensors, Methods Appl. Fluoresc. 5, 024015. https://doi.org/10.1088/2050-6120/aa7170.
19. Lashgari N., Badiei A., Ziarani G.M. (2016) A fluorescent sensor for Al(III) and colorimetric sensor for Fe(III) and Fe(II) based on a novel 8-hydroxyquinoline derivative, J Fluoresc. 26, 1885–1894. http://dx.doi.org/10.1007/s10895-016-1883-3.
20. Madhu P., Sivakumar P. (2019) Selective and sensitive detection of Fe3+ ions using quinoline-based fluorescent chemosensor: Experimental and DFT study, J. Mol. Struc. 1193, 378-385. https://doi.org/10.1016/j.molstruc.2019.05.044.
21. Hao E., Meng T., Zhang M., Pang W., Zhou Y., Jiao L. (2011) Solvent dependent fluorescent properties of a 1,2,3-triazole linked 8-hydroxyquinoline chemosensor: tunable detection from Zinc(II) to Iron(III) in the CH3CN/H2O System, J. Phys. Chem. A. 115, 8234–8241. http://dx.doi.org/10.1021/jp202700s.
22. Aouina A., Oloyede H.O., Akong R.A., Abdelhak J., Gorls H., Plass W., Eseola A.O. (2021) Molecular variation and fluorescent turn-on detection of chromium(III) by three ESIPT-reactive 2,2’-(1,4-phenylenebis (5-phenyl-1H-imidazole-4,2-diyl))diphenols, J. Photochem. Photobiol. A. 406, 113006. https://doi.org/10.1016/j.jphotochem.2020.113006.
23. Kolcu F., Erdener D., Kaya I. (2020) A Schiff base based on triphenylamine and thiophene moieties as a fluorescent sensor for Cr (III) ions: Synthesis, characterization and fluorescent applications, Inorganica Chimica Acta. 509, 119676. https://doi.org/10.1016/j.ica.2020.119676.
24. Chalmardi G.B., Tajbakhsh M., Hasani N., Bekhradnia A. (2018) A new Schiff-base as fluorescent chemosensor for selective detection of Cr3+: An experimental and theoretical study, Tetrahedron. 74, 2251-2260. https://doi.org/10.1016/j.tet.2018.03.046.
25. Zhang M., Gong L., Sun C., Li W., Chang Z., Qi D. (2019) A new fluorescent-colorimetric chemosensor based on a Schiff base for detecting Cr3+, Cu2+, Fe3+ and Al3+ ions, Spectrochimica Acta Part A. 214, 7-13. https://doi.org/10.1016/j.saa.2019.01.089.
26. Vijayakumar P., Dhineshkumar E., Doss M.A., Negar S.N., Renganathan R. (2021) Novel schiff base synthesis of E-N-(1-(1H-phenothiazin-2yl)-ethylidene)-3-((E)-(2-phenyl hydrzono) methyl) aniline ‘‘Turn-on”fluorescent chemosensor for sensitivity and selectivity of detetion of Cr3+ and Pb2+ ions, Mat Today: Pro. 42, 1050-1064. https://doi.org/10.1016/j.matpr.2020.12.124.
27. Chandra R., Manna A.K., Sahu M., Rout K., Patra G.K. (2020) Simple salicylaldimine functionalized dipodal bis Schiff base chromogenic and fluorogenic chemosensors for selective and sensitive detection of Al3+ and Cr3+, Inorganica Chimica Acta. 499, 119192. https://doi.org/10.1016/j.ica.2019.119192.
28. Dhineshkumar E., Iyappan M., Anbuselvan C. (2020) A novel dual chemosensor for selective heavy metal ions Al3+, Cr3+ and its applicable cytotoxic activity, HepG2 living cell images and theoretical studies, J .molstruc. 15, 1128033. https://doi.org/10.1016/j.molstruc.2020.128033.
29. Hu T., Wang L., Li J., Zhao, Y., Cheng J., Li W., Chang Z., Sun C. (2021) A new fluorescent sensor L based on fluorene-naphthalene Schiff base for recognition of Al3+ and Cr3+, Inorganica Chimica Acta. 524, 120421. https://doi.org/10.1016/j.ica.2021.120421.
30. Mukherjee S., Betal S., Chattopadhyay A.P. (2020) Dual sensing and synchronous fluorescence spectroscopic monitoring of Cr3+and Al3+ using a luminescent Schiff base: Extraction and DFT studies, Spectrochimica Acta Part A: Mole and Biomole Spec. 228, 117837. https://doi.org/10.1016/j.saa.2019.117837.
31. Mahata S., Janani G., Mandal B.B., Manivannan V. (2021) A coumarin based visual and fluorometric probe for selective detection of Al(III), Cr(III) and Fe(III) ions through “turn-on” response and its biological application, J Photochem and Photobio A: Chem. 417, 13340. https://doi.org/10.1016/j.jphotochem.2021.113340.
32. Zeng S., Li S-J., Sun X-J., Li M-Q., Xing Z-Y., Li J-L. (2019) A benzothiazole-based chemosensor for significant fluorescent turn-on and ratiometric detection of Al3+ and its application in cell imaging, Inorganica Chim Acta. 486, 654-662. https://doi.org/10.1016/j.ica.2018.11.042.
33. Zeng S., Li S-J., Liu T-T., Sun X-J., Xing Z-Y. (2019) A significant fluorescent “turn-on” chemosensor for Al3+ detection and application in real sample, logic gate and bioimaging, Inorganica Chim Acta. 495, 118962. https://doi.org/10.1016/j.ica.2019.118962.
34. Goswami S., Das S., Aich K., Ghoshal K., Quah C. K., Bhattacharyya M., Fun H. K. (2015) ESIPT and CHEF based highly sensitive and selective ratiometric sensor for Al3+ with imaging in human blood cell, New J. Chem. 39, 8582-8587. https://doi.org/10.1039/C5NJ01468A.
35. Liu L., Sun B., Ding R., Mao Y., Di M. (2020) Al3+ regulated competition between TICT and ESIPT of a chemosensor, J Lumin. 228, 117657. https://doi.org/10.1016/j.jlumin.2020.117657.
36. Yue X-l., Wang Z-Q., Li C-R., Yang Z-Y. (2017) Naphthalene-derived Al3+-selective fluorescent chemosensor based on PET and ESIPT in aqueous solution, Tetrahedron Lett. 58, 4532-4537. https://doi.org/10.1016/j.tetlet.2017.10.044.
37. Kumar G., Singh I., Goel R., Paul K., Luxami V. (2021) Dual-channel ratiometric recognition of Al3+ and F-ions through an ESIPT-ESICT signalling mechanism, Spectrochim. Acta - A: Mol. Biomol. 247, 119112. https://doi.org/10.1016/j.saa.2020.119112.
38. Sinha S., Chowdhury B., Ghosh P. (2016) A highly sensitive ESIPT-based ratiometric fluorescence sensor for selective detection of Al3+, Inorg. Chem. 55, 9212–9220. https://doi.org/10.1021/acs.inorgchem.6b01170.
39. Li Z., Liu C., Wang J., Wang S., Xiao L., Jing X. (2019) A selective diaminomaleonitrile-based dual channel emissive probe for Al3+ and its application in living cell imaging, Spectrochim. Acta - A: Mol. Biomol. 212, 349-355. https://doi.org/10.1016/j.saa.2019.01.031.
40. Kolcu F., Kaya I. (2022) Carbazole-based Schiff base: A sensitive fluorescent ‘turn-on’ chemosensor for recognition of Al(III) ions in aqueous-alcohol media, Arabian. J. Chem. 15, 103935. https://doi.org/10.1016/j.arabjc.2022.103935.
41. Xu H., Chen W., Ju L., Lu H. (2021) A purine based fluorescent chemosensor for the selective and sole detection of Al3+ and its practical applications in test strips and bio-imaging, Spectrochim. Acta - A: Mol. Biomol. 247, 119074. https://doi.org/10.1016/j.saa.2020.119074.
42. Akong R.A., Gorls H., Woods J.A. O., Plass W., Eseola A.O. (2021) ESIPT-inspired fluorescent turn-on sensitivity towards aluminium(III) detection by derivatives of O- and S-bridged bis-(phenol-imine) molecules, Res. Chem. 3, 100236. https://doi.org/10.1016/j.rechem.2021.100236.
43. Das B., Dey S., Maiti G.P., bhattacharjee A., Dhara A., Jana A. (2018) Hydrazinopyrimidine derived novel Al3+ chemosensor: molecular logic gate and biological applications, New J. Chem. 42, 9424-9435. https://doi.org/10.1039/C7NJ05095J.