How to cite this paper
Inbaraj, V & Udhayakumari, D. (2023). A review on Schiff base as colorimetric and fluorescence sensors for d-metal ions.Current Chemistry Letters, 12(4), 739-758.
Refrences
[1] Asiri, A.M., Al-Ghamdi, N.S.M., Dzudzevic-Cancar, H., Kumar, P., Khan, S.A. (2019) Physicochemical and Photophysical investigation of newly synthesized carbazole containing pyrazoline-benzo thiazole as fluorescent chemosensor for the detection of Cu2+, Fe3+ & Fe2+ metal ion. J. molstruc. 1195, 670-680. https://doi.org/10.1016/j.molstruc.2019.05.088.
[2] Zhang, L., RongChen, X., Wen, S.H., Liang, R.P., Qiu, J.D. (2019) Optical sensors for inorganic arsenic detection. TrAC. Trends in Analytical Chem. 118, 869-879. https://doi.org/. 10.1016/j.trac.2019.07.013.
[3] Kaur, B., Kaur, N., Kumar, S. (2018) Colorimetric metal ion sensors – A comprehensive review of the years 2011–2016. Coord Chem Rev. 358, 13-69. https://doi.org/10.1016/j. ccr.2017.12.002
[4] Botz, M.M., Mudde, T. I. (2000) Modeling of natural cyanide attenuation in tailings in tailings impoundments, Mining, Metallurgy. Exploration. 17, 228-233. https://doi.org/10.1007 /BF03403239.
[5] Fang, G., Meng, S., Zhang, G., Pan, J. (2001) Spectrophotometric determination of lead in foods with dibromo-p-methyl-bromosulfonazo. Talanta. 54, 585-589. https://doi.org/10.1016/S0039-9140(00)00677-9.
[6] Liu, Q., Liu, T., Fang, Y. (2020) Perylene bisimide derivative-based Fluorescent film sensors: From sensory materials to device fabrication. Langmuir. 36, 2155-2169. https://doi.org/10.1021/acs.langmuir.9b03919.
[7] Matsui, H., Morimoto, M., Horimoto, K., Nishimura, Y. (2007) Some characteristics of fluoride-induced cell death in rat thymocytes. J. tiv. 21, 1113-1120. https://doi.org/10.1016/ j.tiv.2007.04.006.
[8] Gaggelli, E., Kozlowski, H., Valensin, D., Valensin, G. (2006) Copper Homeostasis and Neuro degenerative Disorders (Alzheimer's, Prion, and Parkinson’s Diseases and Amyotrophic Sclerosis). Chem Rev. 106, 1995-2044. https://doi.org/10.1021/cr040410w.
[9] Strausak, D., Mercer, J.F.B., Dieter, H.H., Stremmel, W., Multhaup, G. (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain. Res. Bull. 55, 175-185. https://doi.org/10.1016/S0361-9230 (01)00454-3.
[10] Jaishankar, M., Tseten ,T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N. (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60-72. https://dx.doi.org/ 10.2478/intox-2014-0009.
[11] Ahamed, M., Verma, S., Kumar, A., Siddiqui., M.K.J. (2005) Environmental exposure to lead and its correlation with biochemical indices in children. Sci Total Environ. 346, 48–55. https://doi.org/10.1016/j.scitotenv.2004.12.019.
[12] Luo, X., Han, Y., Chen, X., Tang, W., Yue, T., Li, Z. (2020) Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends Food Sci Tech. 95, 149-161. https://doi.org/10.1016/j.tifs.2019.11.017.
[13] Shamsipur, M., Barati, A., Nematifar, Z. (2019) Fluorescent pH nanosensors: Design strategies and applications. J. Photochem Photobiol Rev. 39, 76-141. https://doi.org/10.1016/j.jphotochemrev.2019.03.001
[14] Bhalla, P., Goel, A., Tomer, N., Malhotra, R. (2022) Multi responsive chemosensor for the determination of metal ions (Co2+, Cu2+, and Zn2+ ions). Inorg. Chem. Commun. 136, 109181. https://doi.org/10.1016/j.inoche.2021.109181.
[15] Diana, R., Caruso, U., Di Costanzo, L., Gentile, F.S., Panunzi, B. (2021) Colorimetric recognition of multiple first-row transition metals: A single water-soluble chemosensor in acidic and basic conditions. Dyes Pigments. 184, 108832. https://doi.org/10.1016/j.dyepig.2020.108832.
[16] Li,S., He,J., Xu,Q.H. (2020) Aggregation of Metal-Nanoparticle-Induced Fluorescence enhancement and its Application in Sensing. ACS Omega. 5, 41-48. https://doi.org/10.1021/acsomega.9b03560.
[17] Andersen, C.M., Mortensen, G. (2008) Fluorescence Spectroscopy: A rapid tool for analyzing dairy products. J. Agr Food Chem. 56,720-729. https://doi.org/10.1021/jf072025o.
[18] Gowri, A., Kathiravan, A. (2020) Fluorescent chemosensor for detection of water pollutants, Sen. in water Pollut. Moni. 147-160. https://doi.org/10.1007/978-981-15- 0671-09
[19] Udhayakumari, D. (2018) Chromogenic and fluorogenic chemosensors for lethal cyanide ion: A comprehensive review of the year 2016. Sensor Actuat B-Chem. 259, 1022–1057. https://doi.org/10.1016/j.snb.2017.12.006.
[20] Channa, A.M., Siyal, A.N., Memon, S.Q., Parveen, S. (2016) Design of experiment for treatment of arsenic-contaminated water using Schiff’s base metal complex modified Amberlite XAD-2. Desalin & Water Treat. 57, 3664-3673. https://doi.org/10.1080/19443994.2014.988658.
[21] Soomro, F.K., Memon, S.Q., Memon, N., Khuhawar, M. Y. (2020) A new Schiff’s base polymer for remediation of phenol, 2-chlorophenol and 2,4-dichlorophenol from contaminated aqueous systems. Polym Bull. 77, 2367–2383. https://doi.org/10.1007/s00289-019-02852-6.
[22] Antony, R., Arun, T., David S.T., Manickam. (2019) A review on applications of chitosan-based Schiff bases. Inter J. Bio Macro. 129, 615-633. https://doi.org/10.1016/j.ijbiomac. 2019.02.047.
[23] Kaczmarek, M.T., Zabiszak, M., Nowak, M., Jastrzab, R. (2018) Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem Rev. 370, 42-54. https://doi.org/10.1016/j.ccr.2018.05.012.
[24] Das, P., Linert, W. (2016) Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coord Chem Rev. 31,11-23. https://doi.org/10.1016/j.ccr.2015.11.010.
[25] Udhayakumari, D., Naha, S., Velmathi, S. (2017) Colorimetric and fluorescent chemosensors for Cu2+. A comprehensive review from the years 2013–15. J. Anal Methods.9, 552–578. https://doi.org/10.1039/C6AY02416E.
[26] Chen, S.Y., Li, Z., Li, K., Yu, X.Q.: Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. CoordChem Rev. 429, 213691(2021). https://doi.org/10.1016/j.ccr.2020.213691.
[27] Upadhyay, S., Singh, A., Sinha, R., Omer, S., Negi, K. (2019) Colorimetric chemosensors for d- metal ions: A review in the past, present and future prospect. J .Molstruc. 1193, 89-102. https://doi.org/10.1016/j.molstruc.2019.05.007.
[28] Udhayakumari, D., Inbaraj, V. (2020) A Review on Schiff Base Fluorescent Chemosensors for Cell Imaging Applications. J. Fluorescence. 1-21. https://doi.org/10.1007/s10895-020- 02570-7.
[29] Khan, S., Chen, X., Almahri, A., Allehyani, E.S., Alhumaydhi, F.A., Ibrahim, M.M., Ali, S. (2021) Recent developments in fluorescent and colorimetric chemosensors based on Schiff bases for metallic cations detection: A review. J. Environ Chemical Engg. 9, 106381. https://doi.org/10.1016/j.jece.2021.106381.
[30] VinothKumar, G.G., Kesavan, M.P., Sivaraman, G., Rajesh, J. (2018) Colorimetric and NIR fluorescence receptors for F- ion detection in aqueous condition and its Live cell imaging. Sensor Actuat B-Chem. 255, 3194–3206. https://doi.org/10.1016/j.snb.2017.09.145.
[31] Udhayakumari, D. (2020) Detection of toxic fluoride ion via chromogenic and fluorogenic sensing. A comprehensive review of the year 2015–2019. Spectrochimca Acta A. 228, 117817. https://doi.org/10.1016/j.saa.2019.117817.
[32] Saini, N., Prigyai, N., Wannasiri, C., Ervithayasuporn, V., Kiatkamjornwong, S. (2018) Green synthesis of fluorescent N,O- chelating hydrazone Schiff base for multi-analyte sensing in Cu2+, F- and CN- ions. J. Photochem Photobiol. 358, 215–225. https://doi.org/10.1016/j.jphotochem.2018.03.018.
[33] Dalapati, S., Jana, S., Guchhait, N. (2014) Anion recognition by simple chromogenic and chromo-fluorogenic salicylidene Schiff base or reduced-Schiff base receptors. Spectrochim Acta A. 129, 499-508. https://doi.org/10.1016/j.saa.2014.03.090.
[34] Udhayakumari, D., Velmathi, S., Chen, W.C., Wu, S. P. (2014) A dual-mode chemosensor: Highly selective colorimetric fluorescent probe for Cu2+ and F- ions. Sensor Actuat B-Chem. 204, 375-381. https://doi.org/10.1016/j.snb.2014.07.109.
[35] Bhuvanesh, N., Suresh, S., Prabhu, J., Kannan, K., Rajesh Kannan, V., Nandhakumar, R. (2018) Ratiometric fluorescent chemosensor for silver ion and its bacterial cell imaging. Opt Mat. 82, 123–129. https://doi.org/10.1016/j.optmat.2018.05.053.
[36] Kolcu, F., Erdener, D., Kaya, I. (2020) A Schiff base based on triphenylamine and thiophene moieties as a fluorescent sensor for Cr (III) ions: Synthesis, characterization and fluorescent applications. Inorganica Chimica Acta. 509, 119676. https://doi.org/10.1016/j.ica.2020.119676.
[37] Chalmardi, G.B., Tajbakhsh, M., Hasani, N., Bekhradnia, A. (2018) A new Schiff-base as fluorescent chemosensor for selective detection of Cr3+: An experimental and theoretical study. Tetrahedron. 74, 2251-2260. https://doi.org/10.1016/j.tet.2018.03.046.
[38] Zhang, M., Gong, L., Sun, C., Li, W., Chang, Z., Qi, D. (2019) A new fluorescent-colorimetric chemosensor based on a Schiff base for detecting Cr3+, Cu2+, Fe3+ and Al3+ ions. Spectrochimica Acta Part A. 214, 7-13. https://doi.org/10.1016/j.saa.2019.01.089.
[39] Vijayakumar, P., Dhineshkumar, E., Doss, M.A., Negar, S.N., Renganathan, R. (2021) Novelschiff base synthesis of E-N-(1-(1H-phenothiazin-2yl)-ethylidene)-3-((E)-(2-phenyl hydrzono) methyl) aniline ‘‘Turn-on”fluorescent chemosensor for sensitivity and selectivity of detetion of Cr3+ and Pb2+ ions. Mat Today: Pro. 42, 1050-1064. https://doi.org/10.1016/j.matpr.2020.12.124.
[40] Chandra, R., Manna, A.K., Sahu, M., Rout, K., Patra, G.K. (2020) Simple salicylaldimine functionalized dipodal bis Schiff base chromogenic and fluorogenic chemosensors for selective and sensitive detection of Al3+ and Cr3+. Inorganica Chimica Acta. 499, 119192. https://doi.org/10.1016/j.ica.2019.119192.
[41] Dhineshkumar, E., Iyappan, M., Anbuselvan, C. (2020) A novel dual chemosensor for selective heavy metal ions Al3+, Cr3+ and its applicable cytotoxic activity, HepG2 living cell images and theoretical studies. J .molstruc. 15, 1128033. https://doi.org/10.1016/ j.molstruc.2020.128033.
[42] Hu, T., Wang, L., Li, J., Zhao, Y., Cheng, J., Li, W., Chang, Z., Sun, C. (2021) A new fluorescent sensor L based on fluorene-naphthalene Schiff base for recognition of Al3+ and Cr3+. Inorganica Chimica Acta. 524, 120421. https://doi.org/10.1016/j.ica.2021.120421.
[43] Mukherjee, S., Betal, S., Chattopadhyay, A.P. (2020) Dual sensing and synchronous fluorescence spectroscopic monitoring of Cr3+and Al3+ using a luminescent Schiff base: Extraction and DFT studies. Spectrochimica Acta Part A: Mole and Biomole Spec. 228, 117837. https://doi.org/10.1016/j.saa.2019.117837.
[44] Mahata, S., Janani, G., Mandal, B.B., Manivannan, V. (2021) A coumarin based visual and fluorometric probe for selective detection of Al(III), Cr(III) and Fe(III) ions through “turn-on” response and its biological application. J Photochem and Photobio A: Chem. 417, 13340. https://doi.org/10.1016/j.jphotochem.2021.113340.
[45] Singh,G., Sindhu, J., Manisha, Kumar, V., Sharma, V., Sharma, S.K., Mehta, S.K., M.H., Umar, A., Kataria, R. (2019) Development of an off-on selective fluorescent sensor for the detection of Fe3+ ions based on Schiff base and its Hirshfeld surface and DFT studies. J. Mol Liq. 296, 111814. https://doi.org/10.1016/j.molliq.2019.111814.
[46] Çelik, G.G., Şenkuytu, E., Şahin, O., Serin, S. (2021). The new water-soluble Schiff base derivative fluorometric chemosensor with highly selective and instantly sensitivity for Fe3+ ion detection in aqueous media. Inorganica Chimica Acta. 527, 120556. https://doi.org/10.1016/ j.ica.2021.120556.
[47] Yang, Y.S., Liang, C., Yang, C., Zhang, Y.P., Wang, .B.X., Liu, J. (2020) A novel coumarin-derived acylhydrazone Schiff base gelator for synthesis of organogels and identification of Fe3+. Spectrochimica Acta Part A. 237, 118391. https://doi.org/10.1016/j.saa.2020.118391.
[48] Sawminathan, S., Munusamy, S., Manickam, S., Jothi, D., KulathuIyer, S. (2021) Azine based fluorescent rapid "off-on" chemosensor for detecting Th4+ and Fe3+ ions and its real-time application. Dyes and Pig. 196, 109755. https://doi.org/10.1016/j.dyepig.2021.109755.
[49] Yin, Z.Y., Hu, J.H., Gui, K., Fu, Q.Q., Yao, Y., Zhou, F.L., Ma, L.L., Zhang, Z.P. (2020) AIE based colorimetric and “turn-on” fluorescence Schiff base sensor for detecting Fe3+ in an aqueous media and its application. J. Photochem Photobio A. Chem. 396, 112542. https://doi.org/10.1016/j.jphotochem.2020.112542.
[50] Gong, X.., Ding, X., Iang, N.J., Zhong, T., Wang, G. (2020) Benzothiazole-based fluorescence chemosensors for rapid recognition and “turn-off” fluorescence detection of Fe3+ ions in aqueous solution and in living cells. J. Microc. 152, 104351. https://doi.org/10.1016/j.microc.2019.104351.
[51] Özdemir, O. (2021) A new 2-hydroxynaphthalene based Schiff base receptor for detection of Cu2+, Fe3+, HSO4−, CN− ions and D–amino acids in aqueous DMSO solution. J. Molstruc. 1240, 130532. https://doi.org/10.1016/j.molstruc.2021.130532.
[52] He, X., Xie, Q., Fan, J., Xu, C., Xu, W., Li, Y., Ding, F., Deng, H., Chen, H., Shen, J. (2018) Dual-functional chemosensor with colorimetric/ratiometric response to Cu(II)/Zn(II) ions and its applications in bio imaging and molecular logic gates. Dye pigments. 177, 108255. https://doi.org/10.1016/j.dyepig.2020.108255.
[53] Farhi, A., Firdaus, F., Saeed, H., Mujeeb, A., Shakir, M., Owais, M. (2019) A quinoline-based fluorescent probe for selective detection and real-time monitoring of copper ions - a differential colorimetric approach. Photochem. Photobiol. Sci. 18, 3008–3015. https://doi.org/10.1039/C9PP00247B.
[54] Ye, H., Ge, F., Zhou, Y.M., Liu, J.T., Zhao, B.X. (2013) A new Schiff base fluorescent probe for imaging Cu2+ in living cells. Spectrochimica Acta Part A: Mol and Biomol Spectro. 112, 132-138. https://doi.org/10.1016/j.saa.2013.03.093.
[55] Liang, S., Tong, Q., Qin, X., Liao, X., Q. Li, Yan, Q. (2020) A hydrophilic naphthalimide-based fluorescence chemosensor for Cu2+ ion: Sensing properties, cell imaging and molecular logic behavior. Spectrochim Acta A: Molecular and biomolecular Spec. 230, 118029. https://doi.org/10.1016/j.saa.2020.118029.
[56] Ben-nan, C., Qin, H., Yan, H., Chun-man, J., Qi, Z. (2013) Highly sensitive and selective chemosensor for Cu 2+ based on a Schiff base. Chem. Res. Chin. Univ. 29, 419-423. https://doi: 10.1007/s40242-013-2449-4.
[57] Wang, X., Shi, W., Feng, L., Ma, J., Li, Y., Kong, X., Chen, Y., Hui, Y., Xie , Z. (2017) A highly selective and sensitive Schiff-base based turn-on optical sensor for Cu2+ in aqueous medium and acetonitrile. J. Inorg chem. 79, 50-54. https://doi.org/10.1016/j.inoche.2017.03.006.
[58] Manna, A.K., Mondal, J., Rout, K., Patra, G.K. (2018) A new ICT based Schiff-base chemosensor for colorimetric selective detection of copper and its copper complex for both colorimetric and fluorometric detection of Cysteine. J Photochem and Photobio A: Chem. 367, 74-82. https://doi.org/10.1016/j.jphotochem.2018.08.018.
[59] Sahu M., Manna, A.K., Rout, K., Mondal, J., Patra G.K. (2020) A highly selective thiosemicarbazone based Schiff base chemosensor forcolorimetric detection of Cu2+ and Ag+ ions and turn-on fluorometric detection of Ag+ ions. Inorganica Chimica Acta. 508, 119633. https://doi.org/10.1016/j.ica.2020.119633.
[60] Gurusamy, S., Krishnaveni, K., Sankarganesh, M., Sathish, V., Thanasekaran, P., Mathavan , A. (2021) Multiple target detection and binding properties of naphthalene-derived Schiff- base chemosensor. J. Mol Liq. 325, 115190. https://doi.org/10.1016/ j.molliq.2020.115190.
[61] Anbu, S., Paul, A., Surendranath, K., Solaiman, N.S., Pombeiro, A.J.L. (2021) A benzimidazole-live-cell imaging and pyrosequencing applications. Sens Actua B: Chem. 337, 129785. https://doi.org/10.1016/j.snb.2021.129785.
[62] Cheah, P.W., Heng, M.P., Saad, H.M., Sim, K.S., Tan, K.W. (2021) Specific detection of Cu2+ by a pH-independent colorimetric rhodamine based chemosensor. J. Opt Mat. 114, 110990. https://doi.org/10.1016/j.optmat.2021.110990.
[63] D. Mohanasundaram, R. Bhaskar, M. Sankarganesh, K. Nehru, G.G. Vinoth Kumar, Rajesh, J. (2022) A simple pyridine based fluorescent chemosensor for selective detection of copper ion. Spectrochimical Acta Part A: Mole and Biomol Spectro. 265, 20395. https://doi.org/10.1016/j.saa.2021.120395.
[64] Chan, W.C., Saad, H.M., Sim, K.S., Lee, V.S., Ang, C.W., Yeong, K.W., Tan, K.Y. (2021) A rhodamine based chemosensor for solvent dependent chromogenic sensing of cobalt (II) and copper (II) ions with good selectivity and sensitivity: Synthesis, filter paper test strip, DFT calculations and cytotoxicity. Spectro chimical Acta Part A: Mol and Biomol Spectro. 262, 120099. https://doi.org/10.1016/j.saa.2021.120099.
[65] Vashisht, D., Sharma, S., Kumar, R., Saini, V., Saini, V., Ibhadon, A., Sahoo, S.C., Sharma, S., Mehta, S.K., Kataria,R. (2020) Dehydroacetic acid derived Schiff base as selective and sensitive colorimetric chemosensor for the detection of Cu(II) ions in aqueous medium. J. Microchem. 155, 104705. https://doi.org/10.1016/j.microc.2020.104705.
[66] Liu, B., Tan, Y., Hu, Q., Wang, Y., Wu, X., Huang, Q., Zhang, W., Zheng, M., Wang, H. (2019) A naked eye fluorescent chemosensor for Zn2+ based on triphenylamine derivative and its bio imaging in live cells. J. Chem Papers. 73, 3123–3134. https://doi.org/10.1007/s11696-019-00853-3.
[67] Kumar, M., Kumar, A., Singh, M., Sahu, S. K., John, R. P. (2017) A novel benzidine based Schiff base “turn-on” fluorescent chemosensor for selective recognition of Zn2+. Sens and Actu B: Chem. 241, 1218-1223. https://doi.org/10.1016/j.snb.2016.10.008.
[68] Mondal, S., Mandal, S.M., Ojha, D., Chattopadhyay, D ., Sinha, C. (2019) Water soluble sulfaguanidine based Schiff base as a “Turn-on” fluorescent probe for intracellular recognition of Zn2+ in living cells and exploration for biological activities. Polyhedron. 172, 28-38. https://doi.org/10.1016/j.poly.2019.02.042.
[69] Rout, K., Manna, A.K., Sahu, M., Patra, G.K. (2019) A guanidine based bis Schiff base chemosensor for colorimetric detection of Hg (II) and fluorescent detection of Zn (II) ions. Inorganica Chimica Acta. 486, 733-741. https://doi.org/10.1016/j.ica.2018.11.021.
[70] Sun, Y.X., Li, J., Guo, G., Sun, Y.G., Ding, W.M. (2021) Synthesis, structural characterizations and Spectroscopic properties of binuclear CoIII complex and its Schiff ligand as a chemosensor for fluorescent recognition of ZnII. Inorganica Chimica Acta. 527, 120581. https://doi.org/10.1016/j.ica.2021.120581.
[71] Xue, W.Z., Han, X.F., Zhao, X.L., Wu, W.N., Wang, Y., Xu, Z.Q., Fan, Y.C., Xu, Z.H. (2021) An AIRE-active far-red ratiometric fluorescent chemosensor for specifically sensing Zn2+ and resultant Zn2+ complex for subsequent pyrophosphate detection in almost pure aqueous media. Spectrochimica Acta Part A: Mol and Biomole Spectro. 263, 120169. https://doi:10.1016/j.saa.2021.120169.
[72] Das, M., Koley, B., Das, U.K., Bag, A., Laha, S., Samanta, B.C., Choudhuri, I., Bhattacharyya, N., Maity, T. (2021) Piperidine based effective chemosensor for Zn (II) with the formation of binuclear Zn complex having specific Al (III) detection ability in aqueous medium and live cell images. J. Photochem and Photobio A: Chem. 415, 113302. https://doi 10.1016/j.jphotochem.2021.113.
[73] Maity, D., Mandal, S K., Guha, B., Roy, P. (2021) A salicylaldehyde based dual chemosensor for zinc and arsenate ion detection: Biological application. Inorganica Chimica Acta. 519, 120258. https://doi.org/10.1016/j.ica.2021.120258.
[74] Mathew, M.M., Sreekanth, A. (2021) Zn2+ion responsive fluorescent chemosensor probe of Thiophene- diocarbohydrazide derivatives. Inorganica Chimica Acta. 516, 120149. https://doi.org/10.1016/j.ica.2020.120149.
[75] Park, S., Lee, H., Yi, Y., Lim, M.H., Kim, C. (2020) A rhodanine-based fluorescent chemosensor for sensing Zn2+ and Cd2+: Applications to water sample and cell imaging. Inorganica Chimica Acta. 513, 119936. https://doi.org/10.1016/j.ica.2020.119936.
[76] Cheng, T., Xu, Y., Zhang, S., Zhu, W., Qian, X., Duan, L. (2008) A Highly Sensitive and Selective OFF - ON Fluorescent Sensor for Cadmium in Aqueous Solution and Living Cell. J. Am. Chem. Soc. 130, 16160-16161. https://doi.org/10.1021/ja806928n.
[77] Zhao, Q., Li, R.F., Xing, S.K., Liu, X.M., Hu, T.L., Bu, X.H. (2011) A Highly Selective On/Off Fluorescence Sensor for Cadmium (II). Inorg Chem. 50, 10041-10046. https://doi.org/10.1021/ic2008182.
[78] Soibinet, M., Souchon, M., Leray, I., Valeur, B. (2008) Rhod-5N as a Fluorescent Molecular Sensor of Cadmium (II) Ion. J Fluoresc. 18(6), 1077. https://doi.org/10.1007/s10895-008-0352-z.
[79] Li, S., Lu, L., Zhu, M., Yuan, C., Feng, S. (2018) A bifunctional chemosensor for detection of volatile ketone or hexavalent chromate anions in aqueous solution based on a Cd (II) metal–organic frame work. Sens ActuaB: Chem. 258, 970-980. https://doi.org/10.1016/j.snb.2017.11.142.
[80] Yan, J., Fan, L., Qin, J.C., Li, C.R., Yang, Z.Y. (2016) A novel chromone Schiff-base fluorescent chemosensor for Cd(II) based on C=N isomerization. J. Fluoresc. 26, 1059-10651. https://doi.org/10.1007/s10895-016-1794-3.
[81] Wan, X., Ke, H., Tang, J., Yang, G. (2019) Acid Environment-improved fluorescence sensing performance: A quinoline Schiff base-containing sensor for Cd2+ with high sensitivity and selectivity. Talanta. 199, 8-13. https://doi.org/10.1016/j.talanta.2019.01.101.
[82] Liu, Y., Qiao, Q., Zhao, M., Yin, W., Miao, L., Wang, L. Z. Xu, L. (2016) Cd2+-triggered amide tautomerization produces a highly Cd2+-selective fluorescent sensor across a wide pH range. Dyes Pigments. 133, 339-344. https://doi.org/10.1016/j.dyepig.2016.06.017.
[83] Mohanasundaram, D., Bhaskar, R., Vinoth Kumar, G.G., Rajesh, J., Rajagopal, G. (2021) A quinoline based Schiff base as a turn-on fluorescence chemosensor for selective and robust detection of Cd2+ ion in semi-aqueous medium. J. Microc. 106030. https://doi.org/10.1016/j.microc.2021.106030.
[84] Khan, SA., Ullah, Q., Almalki, A.S.A., Kumar, S., Obaid, RJ., Alsharif, MA., Alfaifi, SY., Hashmi, AA. (2021) Synthesis and photophysical investigation of (BTHN) Schiff base as off- on Cd2+ fluorescent chemosensor and its live cell imaging. J. Mol. Liq. 328, 115407. https://doi.org/10.1016/j.molliq.2021.115407.
[85] Chen, W., Xu, H., Ju, L., Lu, H. (2021) A highly sensitive fluorogenic “turn-on” chemosensor for the recognition of Cd2+ based on a hybrid purine-quinoline Schiff base. Tetrahedron. 88, 132123. https://doi.org/10.1016/j.tet.2021.132123.
[86] Rha, CJ., Lee, H., Kim, C. (2020) An effective phthalazine-imidazole-based chemosensor for detecting Cu2+, Co2+ and S2− via the color change. Inorganica Chimica Acta. 511, 119788. https://doi.org/10.1016/j.ica.2020.119788.
[87] Kim, PA., Lee, H., So, H., Kim, C. (2020) A chelated-type colorimetric chemosensor for sensing Co2+ and Cu2+. Inorganica. Chimica. Acta. 505, 119502. https://doi.org/10.1016/j.ica.2020.119502.
[88] Pungut, N.A., Heng, M.P., Saad, H.M., Sim, K.S., Lee, V.S., Tan, K.W. (2021) From one to three, modifications of sensing behavior with solvent system: DFT calculations and real-life application in detection of multianalytes (Cu2+, Ni2+ and Co2+) based on a colorimetric Schiff base probe. J. Molstruc. 1238, 130453. https://doi.org/10.1016/j.molstruc.2021.130453.
[89] Alamgir, S., Rhaman, M.M., Basaran, I., Powell, D.R., Hossain, M.A. (2020) Colorimetric and spectroscopic cobalt (II) sensing by a simple Schiff base. J Poly. 187, 114681. https://doi.org/10.1016/j.poly.2020.114681.
[90] Rani, B.K., John, S.A. (2018) Fluorogenic mercury ion sensor based on pyrene-amino mercapto thiadiazole unit. J. hazard mat. 343, 98-106. https://doi.org/10.1016/j.jhazmat .2017.09.028.
[91] Wu, Y., Wen, X., Fan, Z. (2019) An AIE active pyrene based fluorescent probe for selective sensing Hg2+ and imaging in live cells. Spectrochim Acta A: Mol and biomol spectro. 223, 117315. https://doi.org/10.1016/j.saa.2019.117315.
[92] Musikavanhu, B., Muthusamy, S., Zhu, D., Xue, Z., Yu, Q., Chiyumba, C.N., Mack, J., Nyokong, T., Wang, S., Zhao, L. (2022) A simple quinoline-thiophene Schiff base turn-off chemosensor for Hg2+ detection: spectroscopy, sensing properties and applications. Spectrochimica Acta Part A: Mol and Biomol Spectro. 264, 120338. https://doi.org/10.1016/j.saa.2021.120338.
[93] Huang, L., Sheng, W., Wang, L., Meng, X., Duan, H., Ch, L. (2021) A novel coumarin-based colorimetric and fluorescent probe for detecting increasing concentrations of Hg2+ in vitro and in vivo. RSC Adv. 11, 23597-23606. https://doi.org/10.1039/D1RA01408K.
[2] Zhang, L., RongChen, X., Wen, S.H., Liang, R.P., Qiu, J.D. (2019) Optical sensors for inorganic arsenic detection. TrAC. Trends in Analytical Chem. 118, 869-879. https://doi.org/. 10.1016/j.trac.2019.07.013.
[3] Kaur, B., Kaur, N., Kumar, S. (2018) Colorimetric metal ion sensors – A comprehensive review of the years 2011–2016. Coord Chem Rev. 358, 13-69. https://doi.org/10.1016/j. ccr.2017.12.002
[4] Botz, M.M., Mudde, T. I. (2000) Modeling of natural cyanide attenuation in tailings in tailings impoundments, Mining, Metallurgy. Exploration. 17, 228-233. https://doi.org/10.1007 /BF03403239.
[5] Fang, G., Meng, S., Zhang, G., Pan, J. (2001) Spectrophotometric determination of lead in foods with dibromo-p-methyl-bromosulfonazo. Talanta. 54, 585-589. https://doi.org/10.1016/S0039-9140(00)00677-9.
[6] Liu, Q., Liu, T., Fang, Y. (2020) Perylene bisimide derivative-based Fluorescent film sensors: From sensory materials to device fabrication. Langmuir. 36, 2155-2169. https://doi.org/10.1021/acs.langmuir.9b03919.
[7] Matsui, H., Morimoto, M., Horimoto, K., Nishimura, Y. (2007) Some characteristics of fluoride-induced cell death in rat thymocytes. J. tiv. 21, 1113-1120. https://doi.org/10.1016/ j.tiv.2007.04.006.
[8] Gaggelli, E., Kozlowski, H., Valensin, D., Valensin, G. (2006) Copper Homeostasis and Neuro degenerative Disorders (Alzheimer's, Prion, and Parkinson’s Diseases and Amyotrophic Sclerosis). Chem Rev. 106, 1995-2044. https://doi.org/10.1021/cr040410w.
[9] Strausak, D., Mercer, J.F.B., Dieter, H.H., Stremmel, W., Multhaup, G. (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain. Res. Bull. 55, 175-185. https://doi.org/10.1016/S0361-9230 (01)00454-3.
[10] Jaishankar, M., Tseten ,T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N. (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60-72. https://dx.doi.org/ 10.2478/intox-2014-0009.
[11] Ahamed, M., Verma, S., Kumar, A., Siddiqui., M.K.J. (2005) Environmental exposure to lead and its correlation with biochemical indices in children. Sci Total Environ. 346, 48–55. https://doi.org/10.1016/j.scitotenv.2004.12.019.
[12] Luo, X., Han, Y., Chen, X., Tang, W., Yue, T., Li, Z. (2020) Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends Food Sci Tech. 95, 149-161. https://doi.org/10.1016/j.tifs.2019.11.017.
[13] Shamsipur, M., Barati, A., Nematifar, Z. (2019) Fluorescent pH nanosensors: Design strategies and applications. J. Photochem Photobiol Rev. 39, 76-141. https://doi.org/10.1016/j.jphotochemrev.2019.03.001
[14] Bhalla, P., Goel, A., Tomer, N., Malhotra, R. (2022) Multi responsive chemosensor for the determination of metal ions (Co2+, Cu2+, and Zn2+ ions). Inorg. Chem. Commun. 136, 109181. https://doi.org/10.1016/j.inoche.2021.109181.
[15] Diana, R., Caruso, U., Di Costanzo, L., Gentile, F.S., Panunzi, B. (2021) Colorimetric recognition of multiple first-row transition metals: A single water-soluble chemosensor in acidic and basic conditions. Dyes Pigments. 184, 108832. https://doi.org/10.1016/j.dyepig.2020.108832.
[16] Li,S., He,J., Xu,Q.H. (2020) Aggregation of Metal-Nanoparticle-Induced Fluorescence enhancement and its Application in Sensing. ACS Omega. 5, 41-48. https://doi.org/10.1021/acsomega.9b03560.
[17] Andersen, C.M., Mortensen, G. (2008) Fluorescence Spectroscopy: A rapid tool for analyzing dairy products. J. Agr Food Chem. 56,720-729. https://doi.org/10.1021/jf072025o.
[18] Gowri, A., Kathiravan, A. (2020) Fluorescent chemosensor for detection of water pollutants, Sen. in water Pollut. Moni. 147-160. https://doi.org/10.1007/978-981-15- 0671-09
[19] Udhayakumari, D. (2018) Chromogenic and fluorogenic chemosensors for lethal cyanide ion: A comprehensive review of the year 2016. Sensor Actuat B-Chem. 259, 1022–1057. https://doi.org/10.1016/j.snb.2017.12.006.
[20] Channa, A.M., Siyal, A.N., Memon, S.Q., Parveen, S. (2016) Design of experiment for treatment of arsenic-contaminated water using Schiff’s base metal complex modified Amberlite XAD-2. Desalin & Water Treat. 57, 3664-3673. https://doi.org/10.1080/19443994.2014.988658.
[21] Soomro, F.K., Memon, S.Q., Memon, N., Khuhawar, M. Y. (2020) A new Schiff’s base polymer for remediation of phenol, 2-chlorophenol and 2,4-dichlorophenol from contaminated aqueous systems. Polym Bull. 77, 2367–2383. https://doi.org/10.1007/s00289-019-02852-6.
[22] Antony, R., Arun, T., David S.T., Manickam. (2019) A review on applications of chitosan-based Schiff bases. Inter J. Bio Macro. 129, 615-633. https://doi.org/10.1016/j.ijbiomac. 2019.02.047.
[23] Kaczmarek, M.T., Zabiszak, M., Nowak, M., Jastrzab, R. (2018) Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem Rev. 370, 42-54. https://doi.org/10.1016/j.ccr.2018.05.012.
[24] Das, P., Linert, W. (2016) Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coord Chem Rev. 31,11-23. https://doi.org/10.1016/j.ccr.2015.11.010.
[25] Udhayakumari, D., Naha, S., Velmathi, S. (2017) Colorimetric and fluorescent chemosensors for Cu2+. A comprehensive review from the years 2013–15. J. Anal Methods.9, 552–578. https://doi.org/10.1039/C6AY02416E.
[26] Chen, S.Y., Li, Z., Li, K., Yu, X.Q.: Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. CoordChem Rev. 429, 213691(2021). https://doi.org/10.1016/j.ccr.2020.213691.
[27] Upadhyay, S., Singh, A., Sinha, R., Omer, S., Negi, K. (2019) Colorimetric chemosensors for d- metal ions: A review in the past, present and future prospect. J .Molstruc. 1193, 89-102. https://doi.org/10.1016/j.molstruc.2019.05.007.
[28] Udhayakumari, D., Inbaraj, V. (2020) A Review on Schiff Base Fluorescent Chemosensors for Cell Imaging Applications. J. Fluorescence. 1-21. https://doi.org/10.1007/s10895-020- 02570-7.
[29] Khan, S., Chen, X., Almahri, A., Allehyani, E.S., Alhumaydhi, F.A., Ibrahim, M.M., Ali, S. (2021) Recent developments in fluorescent and colorimetric chemosensors based on Schiff bases for metallic cations detection: A review. J. Environ Chemical Engg. 9, 106381. https://doi.org/10.1016/j.jece.2021.106381.
[30] VinothKumar, G.G., Kesavan, M.P., Sivaraman, G., Rajesh, J. (2018) Colorimetric and NIR fluorescence receptors for F- ion detection in aqueous condition and its Live cell imaging. Sensor Actuat B-Chem. 255, 3194–3206. https://doi.org/10.1016/j.snb.2017.09.145.
[31] Udhayakumari, D. (2020) Detection of toxic fluoride ion via chromogenic and fluorogenic sensing. A comprehensive review of the year 2015–2019. Spectrochimca Acta A. 228, 117817. https://doi.org/10.1016/j.saa.2019.117817.
[32] Saini, N., Prigyai, N., Wannasiri, C., Ervithayasuporn, V., Kiatkamjornwong, S. (2018) Green synthesis of fluorescent N,O- chelating hydrazone Schiff base for multi-analyte sensing in Cu2+, F- and CN- ions. J. Photochem Photobiol. 358, 215–225. https://doi.org/10.1016/j.jphotochem.2018.03.018.
[33] Dalapati, S., Jana, S., Guchhait, N. (2014) Anion recognition by simple chromogenic and chromo-fluorogenic salicylidene Schiff base or reduced-Schiff base receptors. Spectrochim Acta A. 129, 499-508. https://doi.org/10.1016/j.saa.2014.03.090.
[34] Udhayakumari, D., Velmathi, S., Chen, W.C., Wu, S. P. (2014) A dual-mode chemosensor: Highly selective colorimetric fluorescent probe for Cu2+ and F- ions. Sensor Actuat B-Chem. 204, 375-381. https://doi.org/10.1016/j.snb.2014.07.109.
[35] Bhuvanesh, N., Suresh, S., Prabhu, J., Kannan, K., Rajesh Kannan, V., Nandhakumar, R. (2018) Ratiometric fluorescent chemosensor for silver ion and its bacterial cell imaging. Opt Mat. 82, 123–129. https://doi.org/10.1016/j.optmat.2018.05.053.
[36] Kolcu, F., Erdener, D., Kaya, I. (2020) A Schiff base based on triphenylamine and thiophene moieties as a fluorescent sensor for Cr (III) ions: Synthesis, characterization and fluorescent applications. Inorganica Chimica Acta. 509, 119676. https://doi.org/10.1016/j.ica.2020.119676.
[37] Chalmardi, G.B., Tajbakhsh, M., Hasani, N., Bekhradnia, A. (2018) A new Schiff-base as fluorescent chemosensor for selective detection of Cr3+: An experimental and theoretical study. Tetrahedron. 74, 2251-2260. https://doi.org/10.1016/j.tet.2018.03.046.
[38] Zhang, M., Gong, L., Sun, C., Li, W., Chang, Z., Qi, D. (2019) A new fluorescent-colorimetric chemosensor based on a Schiff base for detecting Cr3+, Cu2+, Fe3+ and Al3+ ions. Spectrochimica Acta Part A. 214, 7-13. https://doi.org/10.1016/j.saa.2019.01.089.
[39] Vijayakumar, P., Dhineshkumar, E., Doss, M.A., Negar, S.N., Renganathan, R. (2021) Novelschiff base synthesis of E-N-(1-(1H-phenothiazin-2yl)-ethylidene)-3-((E)-(2-phenyl hydrzono) methyl) aniline ‘‘Turn-on”fluorescent chemosensor for sensitivity and selectivity of detetion of Cr3+ and Pb2+ ions. Mat Today: Pro. 42, 1050-1064. https://doi.org/10.1016/j.matpr.2020.12.124.
[40] Chandra, R., Manna, A.K., Sahu, M., Rout, K., Patra, G.K. (2020) Simple salicylaldimine functionalized dipodal bis Schiff base chromogenic and fluorogenic chemosensors for selective and sensitive detection of Al3+ and Cr3+. Inorganica Chimica Acta. 499, 119192. https://doi.org/10.1016/j.ica.2019.119192.
[41] Dhineshkumar, E., Iyappan, M., Anbuselvan, C. (2020) A novel dual chemosensor for selective heavy metal ions Al3+, Cr3+ and its applicable cytotoxic activity, HepG2 living cell images and theoretical studies. J .molstruc. 15, 1128033. https://doi.org/10.1016/ j.molstruc.2020.128033.
[42] Hu, T., Wang, L., Li, J., Zhao, Y., Cheng, J., Li, W., Chang, Z., Sun, C. (2021) A new fluorescent sensor L based on fluorene-naphthalene Schiff base for recognition of Al3+ and Cr3+. Inorganica Chimica Acta. 524, 120421. https://doi.org/10.1016/j.ica.2021.120421.
[43] Mukherjee, S., Betal, S., Chattopadhyay, A.P. (2020) Dual sensing and synchronous fluorescence spectroscopic monitoring of Cr3+and Al3+ using a luminescent Schiff base: Extraction and DFT studies. Spectrochimica Acta Part A: Mole and Biomole Spec. 228, 117837. https://doi.org/10.1016/j.saa.2019.117837.
[44] Mahata, S., Janani, G., Mandal, B.B., Manivannan, V. (2021) A coumarin based visual and fluorometric probe for selective detection of Al(III), Cr(III) and Fe(III) ions through “turn-on” response and its biological application. J Photochem and Photobio A: Chem. 417, 13340. https://doi.org/10.1016/j.jphotochem.2021.113340.
[45] Singh,G., Sindhu, J., Manisha, Kumar, V., Sharma, V., Sharma, S.K., Mehta, S.K., M.H., Umar, A., Kataria, R. (2019) Development of an off-on selective fluorescent sensor for the detection of Fe3+ ions based on Schiff base and its Hirshfeld surface and DFT studies. J. Mol Liq. 296, 111814. https://doi.org/10.1016/j.molliq.2019.111814.
[46] Çelik, G.G., Şenkuytu, E., Şahin, O., Serin, S. (2021). The new water-soluble Schiff base derivative fluorometric chemosensor with highly selective and instantly sensitivity for Fe3+ ion detection in aqueous media. Inorganica Chimica Acta. 527, 120556. https://doi.org/10.1016/ j.ica.2021.120556.
[47] Yang, Y.S., Liang, C., Yang, C., Zhang, Y.P., Wang, .B.X., Liu, J. (2020) A novel coumarin-derived acylhydrazone Schiff base gelator for synthesis of organogels and identification of Fe3+. Spectrochimica Acta Part A. 237, 118391. https://doi.org/10.1016/j.saa.2020.118391.
[48] Sawminathan, S., Munusamy, S., Manickam, S., Jothi, D., KulathuIyer, S. (2021) Azine based fluorescent rapid "off-on" chemosensor for detecting Th4+ and Fe3+ ions and its real-time application. Dyes and Pig. 196, 109755. https://doi.org/10.1016/j.dyepig.2021.109755.
[49] Yin, Z.Y., Hu, J.H., Gui, K., Fu, Q.Q., Yao, Y., Zhou, F.L., Ma, L.L., Zhang, Z.P. (2020) AIE based colorimetric and “turn-on” fluorescence Schiff base sensor for detecting Fe3+ in an aqueous media and its application. J. Photochem Photobio A. Chem. 396, 112542. https://doi.org/10.1016/j.jphotochem.2020.112542.
[50] Gong, X.., Ding, X., Iang, N.J., Zhong, T., Wang, G. (2020) Benzothiazole-based fluorescence chemosensors for rapid recognition and “turn-off” fluorescence detection of Fe3+ ions in aqueous solution and in living cells. J. Microc. 152, 104351. https://doi.org/10.1016/j.microc.2019.104351.
[51] Özdemir, O. (2021) A new 2-hydroxynaphthalene based Schiff base receptor for detection of Cu2+, Fe3+, HSO4−, CN− ions and D–amino acids in aqueous DMSO solution. J. Molstruc. 1240, 130532. https://doi.org/10.1016/j.molstruc.2021.130532.
[52] He, X., Xie, Q., Fan, J., Xu, C., Xu, W., Li, Y., Ding, F., Deng, H., Chen, H., Shen, J. (2018) Dual-functional chemosensor with colorimetric/ratiometric response to Cu(II)/Zn(II) ions and its applications in bio imaging and molecular logic gates. Dye pigments. 177, 108255. https://doi.org/10.1016/j.dyepig.2020.108255.
[53] Farhi, A., Firdaus, F., Saeed, H., Mujeeb, A., Shakir, M., Owais, M. (2019) A quinoline-based fluorescent probe for selective detection and real-time monitoring of copper ions - a differential colorimetric approach. Photochem. Photobiol. Sci. 18, 3008–3015. https://doi.org/10.1039/C9PP00247B.
[54] Ye, H., Ge, F., Zhou, Y.M., Liu, J.T., Zhao, B.X. (2013) A new Schiff base fluorescent probe for imaging Cu2+ in living cells. Spectrochimica Acta Part A: Mol and Biomol Spectro. 112, 132-138. https://doi.org/10.1016/j.saa.2013.03.093.
[55] Liang, S., Tong, Q., Qin, X., Liao, X., Q. Li, Yan, Q. (2020) A hydrophilic naphthalimide-based fluorescence chemosensor for Cu2+ ion: Sensing properties, cell imaging and molecular logic behavior. Spectrochim Acta A: Molecular and biomolecular Spec. 230, 118029. https://doi.org/10.1016/j.saa.2020.118029.
[56] Ben-nan, C., Qin, H., Yan, H., Chun-man, J., Qi, Z. (2013) Highly sensitive and selective chemosensor for Cu 2+ based on a Schiff base. Chem. Res. Chin. Univ. 29, 419-423. https://doi: 10.1007/s40242-013-2449-4.
[57] Wang, X., Shi, W., Feng, L., Ma, J., Li, Y., Kong, X., Chen, Y., Hui, Y., Xie , Z. (2017) A highly selective and sensitive Schiff-base based turn-on optical sensor for Cu2+ in aqueous medium and acetonitrile. J. Inorg chem. 79, 50-54. https://doi.org/10.1016/j.inoche.2017.03.006.
[58] Manna, A.K., Mondal, J., Rout, K., Patra, G.K. (2018) A new ICT based Schiff-base chemosensor for colorimetric selective detection of copper and its copper complex for both colorimetric and fluorometric detection of Cysteine. J Photochem and Photobio A: Chem. 367, 74-82. https://doi.org/10.1016/j.jphotochem.2018.08.018.
[59] Sahu M., Manna, A.K., Rout, K., Mondal, J., Patra G.K. (2020) A highly selective thiosemicarbazone based Schiff base chemosensor forcolorimetric detection of Cu2+ and Ag+ ions and turn-on fluorometric detection of Ag+ ions. Inorganica Chimica Acta. 508, 119633. https://doi.org/10.1016/j.ica.2020.119633.
[60] Gurusamy, S., Krishnaveni, K., Sankarganesh, M., Sathish, V., Thanasekaran, P., Mathavan , A. (2021) Multiple target detection and binding properties of naphthalene-derived Schiff- base chemosensor. J. Mol Liq. 325, 115190. https://doi.org/10.1016/ j.molliq.2020.115190.
[61] Anbu, S., Paul, A., Surendranath, K., Solaiman, N.S., Pombeiro, A.J.L. (2021) A benzimidazole-live-cell imaging and pyrosequencing applications. Sens Actua B: Chem. 337, 129785. https://doi.org/10.1016/j.snb.2021.129785.
[62] Cheah, P.W., Heng, M.P., Saad, H.M., Sim, K.S., Tan, K.W. (2021) Specific detection of Cu2+ by a pH-independent colorimetric rhodamine based chemosensor. J. Opt Mat. 114, 110990. https://doi.org/10.1016/j.optmat.2021.110990.
[63] D. Mohanasundaram, R. Bhaskar, M. Sankarganesh, K. Nehru, G.G. Vinoth Kumar, Rajesh, J. (2022) A simple pyridine based fluorescent chemosensor for selective detection of copper ion. Spectrochimical Acta Part A: Mole and Biomol Spectro. 265, 20395. https://doi.org/10.1016/j.saa.2021.120395.
[64] Chan, W.C., Saad, H.M., Sim, K.S., Lee, V.S., Ang, C.W., Yeong, K.W., Tan, K.Y. (2021) A rhodamine based chemosensor for solvent dependent chromogenic sensing of cobalt (II) and copper (II) ions with good selectivity and sensitivity: Synthesis, filter paper test strip, DFT calculations and cytotoxicity. Spectro chimical Acta Part A: Mol and Biomol Spectro. 262, 120099. https://doi.org/10.1016/j.saa.2021.120099.
[65] Vashisht, D., Sharma, S., Kumar, R., Saini, V., Saini, V., Ibhadon, A., Sahoo, S.C., Sharma, S., Mehta, S.K., Kataria,R. (2020) Dehydroacetic acid derived Schiff base as selective and sensitive colorimetric chemosensor for the detection of Cu(II) ions in aqueous medium. J. Microchem. 155, 104705. https://doi.org/10.1016/j.microc.2020.104705.
[66] Liu, B., Tan, Y., Hu, Q., Wang, Y., Wu, X., Huang, Q., Zhang, W., Zheng, M., Wang, H. (2019) A naked eye fluorescent chemosensor for Zn2+ based on triphenylamine derivative and its bio imaging in live cells. J. Chem Papers. 73, 3123–3134. https://doi.org/10.1007/s11696-019-00853-3.
[67] Kumar, M., Kumar, A., Singh, M., Sahu, S. K., John, R. P. (2017) A novel benzidine based Schiff base “turn-on” fluorescent chemosensor for selective recognition of Zn2+. Sens and Actu B: Chem. 241, 1218-1223. https://doi.org/10.1016/j.snb.2016.10.008.
[68] Mondal, S., Mandal, S.M., Ojha, D., Chattopadhyay, D ., Sinha, C. (2019) Water soluble sulfaguanidine based Schiff base as a “Turn-on” fluorescent probe for intracellular recognition of Zn2+ in living cells and exploration for biological activities. Polyhedron. 172, 28-38. https://doi.org/10.1016/j.poly.2019.02.042.
[69] Rout, K., Manna, A.K., Sahu, M., Patra, G.K. (2019) A guanidine based bis Schiff base chemosensor for colorimetric detection of Hg (II) and fluorescent detection of Zn (II) ions. Inorganica Chimica Acta. 486, 733-741. https://doi.org/10.1016/j.ica.2018.11.021.
[70] Sun, Y.X., Li, J., Guo, G., Sun, Y.G., Ding, W.M. (2021) Synthesis, structural characterizations and Spectroscopic properties of binuclear CoIII complex and its Schiff ligand as a chemosensor for fluorescent recognition of ZnII. Inorganica Chimica Acta. 527, 120581. https://doi.org/10.1016/j.ica.2021.120581.
[71] Xue, W.Z., Han, X.F., Zhao, X.L., Wu, W.N., Wang, Y., Xu, Z.Q., Fan, Y.C., Xu, Z.H. (2021) An AIRE-active far-red ratiometric fluorescent chemosensor for specifically sensing Zn2+ and resultant Zn2+ complex for subsequent pyrophosphate detection in almost pure aqueous media. Spectrochimica Acta Part A: Mol and Biomole Spectro. 263, 120169. https://doi:10.1016/j.saa.2021.120169.
[72] Das, M., Koley, B., Das, U.K., Bag, A., Laha, S., Samanta, B.C., Choudhuri, I., Bhattacharyya, N., Maity, T. (2021) Piperidine based effective chemosensor for Zn (II) with the formation of binuclear Zn complex having specific Al (III) detection ability in aqueous medium and live cell images. J. Photochem and Photobio A: Chem. 415, 113302. https://doi 10.1016/j.jphotochem.2021.113.
[73] Maity, D., Mandal, S K., Guha, B., Roy, P. (2021) A salicylaldehyde based dual chemosensor for zinc and arsenate ion detection: Biological application. Inorganica Chimica Acta. 519, 120258. https://doi.org/10.1016/j.ica.2021.120258.
[74] Mathew, M.M., Sreekanth, A. (2021) Zn2+ion responsive fluorescent chemosensor probe of Thiophene- diocarbohydrazide derivatives. Inorganica Chimica Acta. 516, 120149. https://doi.org/10.1016/j.ica.2020.120149.
[75] Park, S., Lee, H., Yi, Y., Lim, M.H., Kim, C. (2020) A rhodanine-based fluorescent chemosensor for sensing Zn2+ and Cd2+: Applications to water sample and cell imaging. Inorganica Chimica Acta. 513, 119936. https://doi.org/10.1016/j.ica.2020.119936.
[76] Cheng, T., Xu, Y., Zhang, S., Zhu, W., Qian, X., Duan, L. (2008) A Highly Sensitive and Selective OFF - ON Fluorescent Sensor for Cadmium in Aqueous Solution and Living Cell. J. Am. Chem. Soc. 130, 16160-16161. https://doi.org/10.1021/ja806928n.
[77] Zhao, Q., Li, R.F., Xing, S.K., Liu, X.M., Hu, T.L., Bu, X.H. (2011) A Highly Selective On/Off Fluorescence Sensor for Cadmium (II). Inorg Chem. 50, 10041-10046. https://doi.org/10.1021/ic2008182.
[78] Soibinet, M., Souchon, M., Leray, I., Valeur, B. (2008) Rhod-5N as a Fluorescent Molecular Sensor of Cadmium (II) Ion. J Fluoresc. 18(6), 1077. https://doi.org/10.1007/s10895-008-0352-z.
[79] Li, S., Lu, L., Zhu, M., Yuan, C., Feng, S. (2018) A bifunctional chemosensor for detection of volatile ketone or hexavalent chromate anions in aqueous solution based on a Cd (II) metal–organic frame work. Sens ActuaB: Chem. 258, 970-980. https://doi.org/10.1016/j.snb.2017.11.142.
[80] Yan, J., Fan, L., Qin, J.C., Li, C.R., Yang, Z.Y. (2016) A novel chromone Schiff-base fluorescent chemosensor for Cd(II) based on C=N isomerization. J. Fluoresc. 26, 1059-10651. https://doi.org/10.1007/s10895-016-1794-3.
[81] Wan, X., Ke, H., Tang, J., Yang, G. (2019) Acid Environment-improved fluorescence sensing performance: A quinoline Schiff base-containing sensor for Cd2+ with high sensitivity and selectivity. Talanta. 199, 8-13. https://doi.org/10.1016/j.talanta.2019.01.101.
[82] Liu, Y., Qiao, Q., Zhao, M., Yin, W., Miao, L., Wang, L. Z. Xu, L. (2016) Cd2+-triggered amide tautomerization produces a highly Cd2+-selective fluorescent sensor across a wide pH range. Dyes Pigments. 133, 339-344. https://doi.org/10.1016/j.dyepig.2016.06.017.
[83] Mohanasundaram, D., Bhaskar, R., Vinoth Kumar, G.G., Rajesh, J., Rajagopal, G. (2021) A quinoline based Schiff base as a turn-on fluorescence chemosensor for selective and robust detection of Cd2+ ion in semi-aqueous medium. J. Microc. 106030. https://doi.org/10.1016/j.microc.2021.106030.
[84] Khan, SA., Ullah, Q., Almalki, A.S.A., Kumar, S., Obaid, RJ., Alsharif, MA., Alfaifi, SY., Hashmi, AA. (2021) Synthesis and photophysical investigation of (BTHN) Schiff base as off- on Cd2+ fluorescent chemosensor and its live cell imaging. J. Mol. Liq. 328, 115407. https://doi.org/10.1016/j.molliq.2021.115407.
[85] Chen, W., Xu, H., Ju, L., Lu, H. (2021) A highly sensitive fluorogenic “turn-on” chemosensor for the recognition of Cd2+ based on a hybrid purine-quinoline Schiff base. Tetrahedron. 88, 132123. https://doi.org/10.1016/j.tet.2021.132123.
[86] Rha, CJ., Lee, H., Kim, C. (2020) An effective phthalazine-imidazole-based chemosensor for detecting Cu2+, Co2+ and S2− via the color change. Inorganica Chimica Acta. 511, 119788. https://doi.org/10.1016/j.ica.2020.119788.
[87] Kim, PA., Lee, H., So, H., Kim, C. (2020) A chelated-type colorimetric chemosensor for sensing Co2+ and Cu2+. Inorganica. Chimica. Acta. 505, 119502. https://doi.org/10.1016/j.ica.2020.119502.
[88] Pungut, N.A., Heng, M.P., Saad, H.M., Sim, K.S., Lee, V.S., Tan, K.W. (2021) From one to three, modifications of sensing behavior with solvent system: DFT calculations and real-life application in detection of multianalytes (Cu2+, Ni2+ and Co2+) based on a colorimetric Schiff base probe. J. Molstruc. 1238, 130453. https://doi.org/10.1016/j.molstruc.2021.130453.
[89] Alamgir, S., Rhaman, M.M., Basaran, I., Powell, D.R., Hossain, M.A. (2020) Colorimetric and spectroscopic cobalt (II) sensing by a simple Schiff base. J Poly. 187, 114681. https://doi.org/10.1016/j.poly.2020.114681.
[90] Rani, B.K., John, S.A. (2018) Fluorogenic mercury ion sensor based on pyrene-amino mercapto thiadiazole unit. J. hazard mat. 343, 98-106. https://doi.org/10.1016/j.jhazmat .2017.09.028.
[91] Wu, Y., Wen, X., Fan, Z. (2019) An AIE active pyrene based fluorescent probe for selective sensing Hg2+ and imaging in live cells. Spectrochim Acta A: Mol and biomol spectro. 223, 117315. https://doi.org/10.1016/j.saa.2019.117315.
[92] Musikavanhu, B., Muthusamy, S., Zhu, D., Xue, Z., Yu, Q., Chiyumba, C.N., Mack, J., Nyokong, T., Wang, S., Zhao, L. (2022) A simple quinoline-thiophene Schiff base turn-off chemosensor for Hg2+ detection: spectroscopy, sensing properties and applications. Spectrochimica Acta Part A: Mol and Biomol Spectro. 264, 120338. https://doi.org/10.1016/j.saa.2021.120338.
[93] Huang, L., Sheng, W., Wang, L., Meng, X., Duan, H., Ch, L. (2021) A novel coumarin-based colorimetric and fluorescent probe for detecting increasing concentrations of Hg2+ in vitro and in vivo. RSC Adv. 11, 23597-23606. https://doi.org/10.1039/D1RA01408K.