How to cite this paper
Patel, U., Dabhi, R., Vaja, K., Jani, R & Maru, J. (2023). Salicylaldehyde based Schiff base as a selective and sensitive chemosensor for Cd2+ and Ni2+ ions.Current Chemistry Letters, 12(3), 607-612.
Refrences
1. Bashir A., Manzoor T., Malik L. A., Qureashi A., & Pandith A. H. (2020) Enhanced and selective adsorption of Zn (II), Pb (II), Cd (II), and Hg (II) ions by a dumbbell-and flower-shaped potato starch phosphate polymer: a combined experimental and DFT calculation study. ACS omega, 5(10), 4853-4867.
2. Patil D. Y., Khadke N. B., Patil A. A., & Borhade A. V. (2022) Amino-Quinoline Based Colorimetric Chemosensor for Cu2+ Detection. J. Anal. Chem., 77(1), 18-25.
3. Slassi S., Aarjane M., & Amine A. (2021) A novel imidazole‐derived Schiff base as selective and sensitive colorimetric chemosensor for fluorescent detection of Cu2+ in methanol with mixed aqueous medium. Appl. Organomet. Chem., 35(11), e6408.
4. Tang X. L., Peng X. H., Dou W., Mao J., Zheng J. R., Qin W. W., Chang J., & Yao X. J. (2008) Design of a semirigid molecule as a selective fluorescent chemosensor for recognition of Cd (II). Org. Lett., 10(17), 3653-3656.
5. El Tabl, A., Zawam, S., & Sarhan, K. (2021). Innovating new methods for wastewater treatment in El-Dakhla Oasis in Upper Egypt from chemical and biological pollutants using modified Down Flow Hanging Sponge (DHS) reactor in presence of new environmental friendly chelator. Egypt. J. Chem., 64(9), 4985-4994.
6. Abdelhafeez, I., El-Tohamy, S., Abdel-Raheem, S., & El-Dars, F. (2022). A review on green remediation techniques for hydrocarbons and heavy metals contaminated soil. Curr. Chem. Lett., 11(1), 43-62.
7. Manna A. K., Chowdhury S., & Patra G. K. (2019) A novel hydrazide-based selective and sensitive optical chemosensor for the detection of Ni 2+ ions: Applications in live cell imaging, molecular logic gates and smart phone-based analysis. Dalton Trans., 48(32), 12336-12348.
8. Kang J. H., Lee S. Y., Ahn H. M., & Kim C. (2017) A novel colorimetric chemosensor for the sequential detection of Ni2+ and CN− in aqueous solution. Sens. Actuators B Chem., 242, 25-34.
9. Kumar M., Bhalla V., Dhir A., & Babu J. N. (2010) A Ni2+ selective chemosensor based on partial cone conformation of calix [4] arene. Dalton Trans., 39(42), 10116-10121.
10. Feng L., Zhang Y., Wen L., Chen L., Shen Z., & Guan Y. (2011) Colorimetric filtrations of metal chelate precipitations for the quantitative determination of nickel (II) and lead (II). Analyst, 136(20), 4197-4203.
11. Wang H., Wang D., Wang Q., Li X., & Schalley C. A. (2010) Nickel (II) and iron (III) selective off-on-type fluorescence probes based on perylene tetracarboxylic diimide. Org. Biomol. Chem., 8(5), 1017-1026.
12. Jin T., Lu J., & Nordberg M. (1998) Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology, 19(4-5), 529-535.
13. Purkait R., Dey S., & Sinhaa C. (2018) A multi-analyte responsive chemosensor vanilinyl Schiff base: fluorogenic sensing of Zn (ii), Cd (ii) and I−. New J Chem., 42(20), 16653-16665.
14. Yao P. S., Liu Z., Ge J. Z., Chen Y., & Cao Q. Y. (2015) A novel polynorbornene-based chemosensor for the fluorescence sensing of Zn 2+ and Cd 2+ and subsequent detection of pyrophosphate in aqueous solutions. Dalton Trans., 44(16), 7470-7476.
15. Abdelhamid, A. A., Salama, K. S., Elsayed, A. M., Gad, M. A., & Ali Ali El-Remaily, M. A. E. A. (2022). Synthesis and Toxicological effect of some new pyrrole derivatives as prospective insecticidal agents against the cotton leafworm, spodoptera littoralis (Boisduval). ACS omega, 7(5), 3990-4000.
16. Abdelhamid, A. A., Elwassimy, M. M., Aref, S. A., & Gad, M. A. (2019). Chemical design and bioefficacy screening of new insect growth regulators as potential insecticidal agents against Spodoptera littoralis (Boisd.). Biotechnology reports, 24, 394-401.
17. Gad, M., Aref, S., Abdelhamid, A., Elwassimy, M., & Abdel-Raheem, S. (2021). Biologically active organic compounds as insect growth regulators (IGRs): introduction, mode of action, and some synthetic methods. Curr. Chem. Lett., 10(4), 393-412.
18. Abdelhamid, A., Elsaghiera, A., Aref, S., Gad, M., Ahmed, N., & Abdel-Raheem, S. (2021). Preparation and biological activity evaluation of some benzoylthiourea and benzoylurea compounds. Curr. Chem. Lett., 10(4), 371-376.
19. Abdel-Raheem, S., El-Dean, A., Hassanien, R., El-Sayed, M., Abd-Ella, A., Zawam, S., & Tolba, M. (2022). Synthesis of new distyrylpyridine analogues bearing amide substructure as effective insecticidal agents. Curr. Chem. Lett., 11(1), 23-28.
20. Abdel-Raheem, S., El-Dean, A., Abd-Ella, A., Al-Taifi, E., Hassanien, R., El-Sayed, M., Mohamed, S., Zawam, S., & Bakhit, E. (2021). A concise review on some synthetic routes and applications of pyridine scaffold compounds. Curr. Chem. Lett., 10(4), 337-362.
21. Elhady, O., Mansour, E., Elwassimy, M., Zawam, S., & Drar, A. (2022). Synthesis and characterization of some new tebufenozide analogues and study their toxicological effect against Spodoptera littoralis (Boisd.). Curr. Chem. Lett., 11(1), 63-68.
22. Prakash A., & Malhotra R. (2018) Co (II), Ni (II), Cu (II) and Zn (II) complexes of aminothiazole‐derived Schiff base ligands: Synthesis, characterization, antibacterial and cytotoxicity evaluation, bovine serum albumin binding and density functional theory studies. Appl. Organomet. Chem., 32(2), e4098.
23. Devi J., Batra N., & Malhotra R. (2012) Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 397-405
24. Devi J., & Batra N. (2015) Synthesis, characterization and antimicrobial activities of mixed ligand transition metal complexes with isatin monohydrazone Schiff base ligands and heterocyclic nitrogen base. Spectrochim. Acta A Mol. Biomol. Spectrosc., 135, 710-719.
25. Daoud D., Douadi T., Issaadi S., & Chafaa S. (2014) Adsorption and corrosion inhibition of new synthesized thiophene Schiff base on mild steel X52 in HCl and H2SO4 solutions. Corros Sci ., 79, 50-58.
26. El-Gaby, M., Ammar, Y., Drar, A., & Gad, M. (2022). Insecticidal bioefficacy screening of some chalcone and acetophenone hydrazone derivatives on Spodopetra Frugiperda (Lepidoptera: Noctuidae). Curr. Chem. Lett., 11(3), 263-268.
27. Antony R., Arun T., & Manickam S. T. D. (2019) A review on applications of chitosan-based Schiff bases. Int. J. Biol. Macromol., 129, 615-633.
28. Das D. K., Deka S., & Guha A. K. (2019) Schiff Base Derived from 4, 4′-methylenedianiline and p-anisaldehyde: Colorimetric Sensor for Cu2+, Paper Strip Sensor for Al3+ and Fluorescent Sensor for Pb2+. J. Fluoresc., 29(6), 1467-1474.
29. Rout K., Manna A. K., Sahu M., & Patra G. K. (2019) A guanidine based bis Schiff base chemosensor for colorimetric detection of Hg (II) and fluorescent detection of Zn (II) ions. Inorganica Chim. Acta, 486, 733-741.
30. Shree G. J., Murugesan S., & Siva A. (2020) A highly sensitive and selective Schiff-base probe as a colorimetric sensor for Co2+ and a fluorimetric sensor for F− and its utility in bio-imaging, molecular logic gate and real sample analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 226, 117613.
31. Sidana N., Devi P., & Kaur H. (2022) Thiophenol amine-based Schiff base for colorimetric detection of Cu2+ and Hg2+ ions. Opt. Mater., 124, 111985.
32. Slassi S., Aarjane M., & Amine A. (2021) A novel imidazole‐derived Schiff base as selective and sensitive colorimetric chemosensor for fluorescent detection of Cu2+ in methanol with mixed aqueous medium. Appl. Organomet. Chem., 35(11), e6408.
33. Tomer N., Goel A., Ghule V. D., & Malhotra R. (2021) A chromone based Schiff base: An efficient colorimetric sensor for specific detection of Cu (II) ion in real water samples. J. Mol. Struct., 1227, 129549.
34. Mondal A., Das C., Corbella M., Bauzá A., Frontera A., Saha M., Mondal S., Saha K. D., & Chattopadhyay S. K. (2020) Biological promiscuity of a binuclear Cu (ii) complex of aminoguanidine Schiff base: DNA binding, anticancer activity and histidine sensing ability of the complex. New J Chem., 44(18), 7319-7328.
35. Sun X. H., Tao Y., Liu Y. F., & Chen B. (2007) Synthesis and biological activities of substituted triazolethione Schiff base. Chin. J. Chem., 25(10), 1573-1576.
36. Fan J., Zhang S., Xu Y., Wei N., Wan B., Qian L., & Liu Y. (2020) A polyethylenimine/salicylaldehyde modified cellulose Schiff base for selective and sensitive Fe3+ detection. Carbohydr. Polym., 228, 115379.
2. Patil D. Y., Khadke N. B., Patil A. A., & Borhade A. V. (2022) Amino-Quinoline Based Colorimetric Chemosensor for Cu2+ Detection. J. Anal. Chem., 77(1), 18-25.
3. Slassi S., Aarjane M., & Amine A. (2021) A novel imidazole‐derived Schiff base as selective and sensitive colorimetric chemosensor for fluorescent detection of Cu2+ in methanol with mixed aqueous medium. Appl. Organomet. Chem., 35(11), e6408.
4. Tang X. L., Peng X. H., Dou W., Mao J., Zheng J. R., Qin W. W., Chang J., & Yao X. J. (2008) Design of a semirigid molecule as a selective fluorescent chemosensor for recognition of Cd (II). Org. Lett., 10(17), 3653-3656.
5. El Tabl, A., Zawam, S., & Sarhan, K. (2021). Innovating new methods for wastewater treatment in El-Dakhla Oasis in Upper Egypt from chemical and biological pollutants using modified Down Flow Hanging Sponge (DHS) reactor in presence of new environmental friendly chelator. Egypt. J. Chem., 64(9), 4985-4994.
6. Abdelhafeez, I., El-Tohamy, S., Abdel-Raheem, S., & El-Dars, F. (2022). A review on green remediation techniques for hydrocarbons and heavy metals contaminated soil. Curr. Chem. Lett., 11(1), 43-62.
7. Manna A. K., Chowdhury S., & Patra G. K. (2019) A novel hydrazide-based selective and sensitive optical chemosensor for the detection of Ni 2+ ions: Applications in live cell imaging, molecular logic gates and smart phone-based analysis. Dalton Trans., 48(32), 12336-12348.
8. Kang J. H., Lee S. Y., Ahn H. M., & Kim C. (2017) A novel colorimetric chemosensor for the sequential detection of Ni2+ and CN− in aqueous solution. Sens. Actuators B Chem., 242, 25-34.
9. Kumar M., Bhalla V., Dhir A., & Babu J. N. (2010) A Ni2+ selective chemosensor based on partial cone conformation of calix [4] arene. Dalton Trans., 39(42), 10116-10121.
10. Feng L., Zhang Y., Wen L., Chen L., Shen Z., & Guan Y. (2011) Colorimetric filtrations of metal chelate precipitations for the quantitative determination of nickel (II) and lead (II). Analyst, 136(20), 4197-4203.
11. Wang H., Wang D., Wang Q., Li X., & Schalley C. A. (2010) Nickel (II) and iron (III) selective off-on-type fluorescence probes based on perylene tetracarboxylic diimide. Org. Biomol. Chem., 8(5), 1017-1026.
12. Jin T., Lu J., & Nordberg M. (1998) Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology, 19(4-5), 529-535.
13. Purkait R., Dey S., & Sinhaa C. (2018) A multi-analyte responsive chemosensor vanilinyl Schiff base: fluorogenic sensing of Zn (ii), Cd (ii) and I−. New J Chem., 42(20), 16653-16665.
14. Yao P. S., Liu Z., Ge J. Z., Chen Y., & Cao Q. Y. (2015) A novel polynorbornene-based chemosensor for the fluorescence sensing of Zn 2+ and Cd 2+ and subsequent detection of pyrophosphate in aqueous solutions. Dalton Trans., 44(16), 7470-7476.
15. Abdelhamid, A. A., Salama, K. S., Elsayed, A. M., Gad, M. A., & Ali Ali El-Remaily, M. A. E. A. (2022). Synthesis and Toxicological effect of some new pyrrole derivatives as prospective insecticidal agents against the cotton leafworm, spodoptera littoralis (Boisduval). ACS omega, 7(5), 3990-4000.
16. Abdelhamid, A. A., Elwassimy, M. M., Aref, S. A., & Gad, M. A. (2019). Chemical design and bioefficacy screening of new insect growth regulators as potential insecticidal agents against Spodoptera littoralis (Boisd.). Biotechnology reports, 24, 394-401.
17. Gad, M., Aref, S., Abdelhamid, A., Elwassimy, M., & Abdel-Raheem, S. (2021). Biologically active organic compounds as insect growth regulators (IGRs): introduction, mode of action, and some synthetic methods. Curr. Chem. Lett., 10(4), 393-412.
18. Abdelhamid, A., Elsaghiera, A., Aref, S., Gad, M., Ahmed, N., & Abdel-Raheem, S. (2021). Preparation and biological activity evaluation of some benzoylthiourea and benzoylurea compounds. Curr. Chem. Lett., 10(4), 371-376.
19. Abdel-Raheem, S., El-Dean, A., Hassanien, R., El-Sayed, M., Abd-Ella, A., Zawam, S., & Tolba, M. (2022). Synthesis of new distyrylpyridine analogues bearing amide substructure as effective insecticidal agents. Curr. Chem. Lett., 11(1), 23-28.
20. Abdel-Raheem, S., El-Dean, A., Abd-Ella, A., Al-Taifi, E., Hassanien, R., El-Sayed, M., Mohamed, S., Zawam, S., & Bakhit, E. (2021). A concise review on some synthetic routes and applications of pyridine scaffold compounds. Curr. Chem. Lett., 10(4), 337-362.
21. Elhady, O., Mansour, E., Elwassimy, M., Zawam, S., & Drar, A. (2022). Synthesis and characterization of some new tebufenozide analogues and study their toxicological effect against Spodoptera littoralis (Boisd.). Curr. Chem. Lett., 11(1), 63-68.
22. Prakash A., & Malhotra R. (2018) Co (II), Ni (II), Cu (II) and Zn (II) complexes of aminothiazole‐derived Schiff base ligands: Synthesis, characterization, antibacterial and cytotoxicity evaluation, bovine serum albumin binding and density functional theory studies. Appl. Organomet. Chem., 32(2), e4098.
23. Devi J., Batra N., & Malhotra R. (2012) Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 397-405
24. Devi J., & Batra N. (2015) Synthesis, characterization and antimicrobial activities of mixed ligand transition metal complexes with isatin monohydrazone Schiff base ligands and heterocyclic nitrogen base. Spectrochim. Acta A Mol. Biomol. Spectrosc., 135, 710-719.
25. Daoud D., Douadi T., Issaadi S., & Chafaa S. (2014) Adsorption and corrosion inhibition of new synthesized thiophene Schiff base on mild steel X52 in HCl and H2SO4 solutions. Corros Sci ., 79, 50-58.
26. El-Gaby, M., Ammar, Y., Drar, A., & Gad, M. (2022). Insecticidal bioefficacy screening of some chalcone and acetophenone hydrazone derivatives on Spodopetra Frugiperda (Lepidoptera: Noctuidae). Curr. Chem. Lett., 11(3), 263-268.
27. Antony R., Arun T., & Manickam S. T. D. (2019) A review on applications of chitosan-based Schiff bases. Int. J. Biol. Macromol., 129, 615-633.
28. Das D. K., Deka S., & Guha A. K. (2019) Schiff Base Derived from 4, 4′-methylenedianiline and p-anisaldehyde: Colorimetric Sensor for Cu2+, Paper Strip Sensor for Al3+ and Fluorescent Sensor for Pb2+. J. Fluoresc., 29(6), 1467-1474.
29. Rout K., Manna A. K., Sahu M., & Patra G. K. (2019) A guanidine based bis Schiff base chemosensor for colorimetric detection of Hg (II) and fluorescent detection of Zn (II) ions. Inorganica Chim. Acta, 486, 733-741.
30. Shree G. J., Murugesan S., & Siva A. (2020) A highly sensitive and selective Schiff-base probe as a colorimetric sensor for Co2+ and a fluorimetric sensor for F− and its utility in bio-imaging, molecular logic gate and real sample analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 226, 117613.
31. Sidana N., Devi P., & Kaur H. (2022) Thiophenol amine-based Schiff base for colorimetric detection of Cu2+ and Hg2+ ions. Opt. Mater., 124, 111985.
32. Slassi S., Aarjane M., & Amine A. (2021) A novel imidazole‐derived Schiff base as selective and sensitive colorimetric chemosensor for fluorescent detection of Cu2+ in methanol with mixed aqueous medium. Appl. Organomet. Chem., 35(11), e6408.
33. Tomer N., Goel A., Ghule V. D., & Malhotra R. (2021) A chromone based Schiff base: An efficient colorimetric sensor for specific detection of Cu (II) ion in real water samples. J. Mol. Struct., 1227, 129549.
34. Mondal A., Das C., Corbella M., Bauzá A., Frontera A., Saha M., Mondal S., Saha K. D., & Chattopadhyay S. K. (2020) Biological promiscuity of a binuclear Cu (ii) complex of aminoguanidine Schiff base: DNA binding, anticancer activity and histidine sensing ability of the complex. New J Chem., 44(18), 7319-7328.
35. Sun X. H., Tao Y., Liu Y. F., & Chen B. (2007) Synthesis and biological activities of substituted triazolethione Schiff base. Chin. J. Chem., 25(10), 1573-1576.
36. Fan J., Zhang S., Xu Y., Wei N., Wan B., Qian L., & Liu Y. (2020) A polyethylenimine/salicylaldehyde modified cellulose Schiff base for selective and sensitive Fe3+ detection. Carbohydr. Polym., 228, 115379.