compound 4c turned out to be the most active against the biofilm formation of P. aeruginosa 449 (biomass decreased by 39.8%).
How to cite this paper
Muzychka, L., Boiko, I., Vrynchanu, N & Smolii, O. (2024). Synthesis, antibacterial, and antibiofilm activities of pulmonarin B analogues.Current Chemistry Letters, 13(2), 335-342.
Refrences
1 Vivas R., Barbosa A.A.T., Dolabela S.S., and Jain S. (2019) Multidrug-Resistant Bacteria and Alternative Methods to Control Them: An Overview. Microb. Drug Resist., 25(6) 890-908.
2 Srinivasan R., Santhakumari S., Poonguzhali P., Geetha M., Dyavaiah M., and Xiangmin L. (2021) Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front. Microbiol., 12 676458.
3 Verderosa A.D., Totsika M., and Fairfull-Smith K.E. (2019) Bacterial Biofilm Eradication Agents: A Current Review. Front. Chem., 28(7) 824-841.
4 Nadar S., Khan T., Patching S.G., and Omri A. (2022) Development of Antibiofilm Therapeutics Strategies to Overcome Antimicrobial Drug Resistance. Microorganisms, 10(2) 303-331.
5 Choudhary A., Naughton L.M., Montánchez I., Dobson A.D.W., and Rai D.K. (2017) Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials. Mar. Drugs, 15(9) 272-314.
6 Wang K.L., Dou Z.R., Gong G.F., Li H.F., Jiang B., and Xu Y. (2022) Anti-Larval and Anti-Algal Natural Products from Marine Microorganisms as Sources of Anti-Biofilm Agents. Mar. Drugs, 20(2) 90-115.
7 Lahiri D., Nag M., Dey A., Sarkar T., Pati S., Nirmal N.P., Ray R.R., Upadhye V.J., Pandit S., Moovendhan M., and Kavisri M. (2023) Marine bioactive compounds as antibiofilm agent: a metabolomic approach. Arch. Microbiol., 205(1) 54.
8 Deng Y., Liu Y., Li J., Wang X., He S., Yan X., Shi Y., Zhang W., and Ding L. (2022) Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. Eur. J. Med. Chem., 239 114513.
9 Peng J., Li J., and Hamann M.T. (2005). The marine bromotyrosine derivatives. Alkaloids. Chemistry Biology, 61 59-262.
10 Binnewerg B., Schubert M., Voronkina A., Muzychka L., Wysokowski M., Petrenko I., Djurović M., Kovalchuk V.,Tsurkan M., Martinovic R., Bechmann N., Fursov A., Ivanenko V.N., Tabachnick K.R., Smolii O.B., Joseph Y., Giovine M., Bornstein S.R., Stelling A.L., Tunger A., and Ehrlich H. (2020) Marine biomaterials: Biomimetic and pharmacological potential of cultivated Aplysina aerophoba marine demosponge. Materials Science and Engineering: C., 109 110566.
11 Muzychka L., Voronkina A., Kovalchuk V., Smolii O.B., Wysokowski M., Petrenko I., Youssef D.T.A., Ehrlich I., and Ehrlich H. (2021) Marine biomimetics: bromotyrosines loaded chitinous skeleton as source of antibacterial agents. Applied Physics A., 127 15-26.
12 Tintillier F., Moriou C., Petek S., Fauchon M., Hellio C., Saulnier D., Ekins M., Hooper J.N.A., Al-Mourabit A., and Debitus C. (2020) Quorum Sensing Inhibitory and Antifouling Activities of New Bromotyrosine Metabolites from the Polynesian Sponge Pseudoceratina n. sp. Mar. Drugs, 18(5) 272-288.
13 Tadesse M., Svenson J., Sepčić K , Trembleau L., Engqvist M., Andersen J.H., Jaspars M., Stensvåg K., and Haug T. (2014) Isolation and synthesis of pulmonarins A and B, acetylcholinesterase inhibitors from the colonial ascidian Synoicum pulmonaria. J. Nat. Prod., 77(2) 364-369.
14 Trepos R., Cervin G., Hellio C., Pavia H., Stensen W., Stensvåg K., and Svenson J. (2014). Antifouling Compounds from the Sub-Arctic Ascidian Synoicum pulmonaria: Synoxazolidinones A and C, Pulmonarins A and B, and Synthetic Analogues. J. Nat. Prod., 77(9) 2105-2113.
15 `Zhang M., Ding X., Kang J., Gao Y., Wang Z., and Wang Q. (2020) Marine Natural Product for Pesticide Candidate: Pulmonarin Alkaloids as Novel Antiviral and Anti-Phytopathogenic-Fungus Agents. J. Agric. Food Chem., 68(41) 11350-11357.
16 Kwaśniewska D., Chen Y.-L., and Wieczorek D. (2020) Biological Activity of Quaternary Ammonium Salts and Their Derivatives. Pathogens, 9(6) 459-470.
17 Zhou Z., Zhou S., Zhang X., Zeng S., Xu Y., Nie W., Zhou Y., Xu T., and Chen P. (2023) Quaternary Ammonium Salts: Insights into Synthesis and New Directions in Antibacterial Applications. Bioconjugate Chem., 34(2) 302-325.
18 Nadagouda M.N., Vijayasarathy P., Sin A., Nam H, Khan S., Parambath J.B.M., Mohamed A.A., and Han C. (2022) Antimicrobial activity of quaternary ammonium salts: structure-activity relationship. Med. Chem. Res., 31 1663-1678.
19 Kula N., Lamch Ł., Futoma-Kołoch B., Wilk K. A., and Obłąk E. (2022) The effectiveness of newly synthesized quaternary ammonium salts differing in chain length and type of counterion against priority human pathogens. Sci. Rep., 12 21799-21816.
20 Obłąk E., Futoma-Kołoch B., and Wieczyńska A. (2021) Biological activity of quaternary ammonium salts and resistance of microorganisms to these compounds. World J. Microbiol. Biotechnol., 37(2) 22-32.
21 Dan W., Gao J., Qi X., Wang J., and Dai J. (2022) Antibacterial quaternary ammonium agents: Chemical diversity and biological mechanism. Eur. J. Med. Chem., 243 114765.
22 Shestak O.P., Novikov V.L., Ivanova E.P., and Gorshkova N.M. (2001) Synthesis and Antimicrobial Activity of [3,5-Dibromo(dichloro)-1-hydroxy-4-oxocyclohexa-2,5-dien-1-yl]acetic Acids and Their Derivatives. Pharm. Chem. J., 35 366-369.
23 Black J.W., Jennings M.C., Azarewicz J., Paniak T.J., Grenier M.C., Wuest W.M., and Minbiole K.P.C. (2014). TMEDA-derived biscationic amphiphiles: An economical preparation of potent antibacterial agents. Bioorg. Med. Chem. Lett., 24(1), 99-102.
24 Obłąk E., Piecuch A., Guz-Regner K., and Dworniczek E. (2014) Antibacterial activity of gemini quaternary ammonium salts. FEMS Microbiology Lett., 350(2) 190-198.
25 ESCMID - European Society of Clinical Microbiology and Infectious Diseases 2008. (2023b, January 2). eucast: Clinical breakpoints and dosing of antibiotics. Retrieved from https://www.eucast.org/clinical_breakpoints
26 Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices Part 1: Broth microdilution reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. (2022, October 25). Retrieved from https://www.iso.org/standard/70464.html
27 O’Toole G. A. (2011) Microtiter Dish Biofilm Formation Assay. J. Vis. Exp., 47 2437-2438.
2 Srinivasan R., Santhakumari S., Poonguzhali P., Geetha M., Dyavaiah M., and Xiangmin L. (2021) Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front. Microbiol., 12 676458.
3 Verderosa A.D., Totsika M., and Fairfull-Smith K.E. (2019) Bacterial Biofilm Eradication Agents: A Current Review. Front. Chem., 28(7) 824-841.
4 Nadar S., Khan T., Patching S.G., and Omri A. (2022) Development of Antibiofilm Therapeutics Strategies to Overcome Antimicrobial Drug Resistance. Microorganisms, 10(2) 303-331.
5 Choudhary A., Naughton L.M., Montánchez I., Dobson A.D.W., and Rai D.K. (2017) Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials. Mar. Drugs, 15(9) 272-314.
6 Wang K.L., Dou Z.R., Gong G.F., Li H.F., Jiang B., and Xu Y. (2022) Anti-Larval and Anti-Algal Natural Products from Marine Microorganisms as Sources of Anti-Biofilm Agents. Mar. Drugs, 20(2) 90-115.
7 Lahiri D., Nag M., Dey A., Sarkar T., Pati S., Nirmal N.P., Ray R.R., Upadhye V.J., Pandit S., Moovendhan M., and Kavisri M. (2023) Marine bioactive compounds as antibiofilm agent: a metabolomic approach. Arch. Microbiol., 205(1) 54.
8 Deng Y., Liu Y., Li J., Wang X., He S., Yan X., Shi Y., Zhang W., and Ding L. (2022) Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. Eur. J. Med. Chem., 239 114513.
9 Peng J., Li J., and Hamann M.T. (2005). The marine bromotyrosine derivatives. Alkaloids. Chemistry Biology, 61 59-262.
10 Binnewerg B., Schubert M., Voronkina A., Muzychka L., Wysokowski M., Petrenko I., Djurović M., Kovalchuk V.,Tsurkan M., Martinovic R., Bechmann N., Fursov A., Ivanenko V.N., Tabachnick K.R., Smolii O.B., Joseph Y., Giovine M., Bornstein S.R., Stelling A.L., Tunger A., and Ehrlich H. (2020) Marine biomaterials: Biomimetic and pharmacological potential of cultivated Aplysina aerophoba marine demosponge. Materials Science and Engineering: C., 109 110566.
11 Muzychka L., Voronkina A., Kovalchuk V., Smolii O.B., Wysokowski M., Petrenko I., Youssef D.T.A., Ehrlich I., and Ehrlich H. (2021) Marine biomimetics: bromotyrosines loaded chitinous skeleton as source of antibacterial agents. Applied Physics A., 127 15-26.
12 Tintillier F., Moriou C., Petek S., Fauchon M., Hellio C., Saulnier D., Ekins M., Hooper J.N.A., Al-Mourabit A., and Debitus C. (2020) Quorum Sensing Inhibitory and Antifouling Activities of New Bromotyrosine Metabolites from the Polynesian Sponge Pseudoceratina n. sp. Mar. Drugs, 18(5) 272-288.
13 Tadesse M., Svenson J., Sepčić K , Trembleau L., Engqvist M., Andersen J.H., Jaspars M., Stensvåg K., and Haug T. (2014) Isolation and synthesis of pulmonarins A and B, acetylcholinesterase inhibitors from the colonial ascidian Synoicum pulmonaria. J. Nat. Prod., 77(2) 364-369.
14 Trepos R., Cervin G., Hellio C., Pavia H., Stensen W., Stensvåg K., and Svenson J. (2014). Antifouling Compounds from the Sub-Arctic Ascidian Synoicum pulmonaria: Synoxazolidinones A and C, Pulmonarins A and B, and Synthetic Analogues. J. Nat. Prod., 77(9) 2105-2113.
15 `Zhang M., Ding X., Kang J., Gao Y., Wang Z., and Wang Q. (2020) Marine Natural Product for Pesticide Candidate: Pulmonarin Alkaloids as Novel Antiviral and Anti-Phytopathogenic-Fungus Agents. J. Agric. Food Chem., 68(41) 11350-11357.
16 Kwaśniewska D., Chen Y.-L., and Wieczorek D. (2020) Biological Activity of Quaternary Ammonium Salts and Their Derivatives. Pathogens, 9(6) 459-470.
17 Zhou Z., Zhou S., Zhang X., Zeng S., Xu Y., Nie W., Zhou Y., Xu T., and Chen P. (2023) Quaternary Ammonium Salts: Insights into Synthesis and New Directions in Antibacterial Applications. Bioconjugate Chem., 34(2) 302-325.
18 Nadagouda M.N., Vijayasarathy P., Sin A., Nam H, Khan S., Parambath J.B.M., Mohamed A.A., and Han C. (2022) Antimicrobial activity of quaternary ammonium salts: structure-activity relationship. Med. Chem. Res., 31 1663-1678.
19 Kula N., Lamch Ł., Futoma-Kołoch B., Wilk K. A., and Obłąk E. (2022) The effectiveness of newly synthesized quaternary ammonium salts differing in chain length and type of counterion against priority human pathogens. Sci. Rep., 12 21799-21816.
20 Obłąk E., Futoma-Kołoch B., and Wieczyńska A. (2021) Biological activity of quaternary ammonium salts and resistance of microorganisms to these compounds. World J. Microbiol. Biotechnol., 37(2) 22-32.
21 Dan W., Gao J., Qi X., Wang J., and Dai J. (2022) Antibacterial quaternary ammonium agents: Chemical diversity and biological mechanism. Eur. J. Med. Chem., 243 114765.
22 Shestak O.P., Novikov V.L., Ivanova E.P., and Gorshkova N.M. (2001) Synthesis and Antimicrobial Activity of [3,5-Dibromo(dichloro)-1-hydroxy-4-oxocyclohexa-2,5-dien-1-yl]acetic Acids and Their Derivatives. Pharm. Chem. J., 35 366-369.
23 Black J.W., Jennings M.C., Azarewicz J., Paniak T.J., Grenier M.C., Wuest W.M., and Minbiole K.P.C. (2014). TMEDA-derived biscationic amphiphiles: An economical preparation of potent antibacterial agents. Bioorg. Med. Chem. Lett., 24(1), 99-102.
24 Obłąk E., Piecuch A., Guz-Regner K., and Dworniczek E. (2014) Antibacterial activity of gemini quaternary ammonium salts. FEMS Microbiology Lett., 350(2) 190-198.
25 ESCMID - European Society of Clinical Microbiology and Infectious Diseases 2008. (2023b, January 2). eucast: Clinical breakpoints and dosing of antibiotics. Retrieved from https://www.eucast.org/clinical_breakpoints
26 Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices Part 1: Broth microdilution reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. (2022, October 25). Retrieved from https://www.iso.org/standard/70464.html
27 O’Toole G. A. (2011) Microtiter Dish Biofilm Formation Assay. J. Vis. Exp., 47 2437-2438.