How to cite this paper
Patel, K., Variya, H & Patel, G. (2024). Synthesis and characterization of 4(3-(4-Fluorophenyl)2-methyl-1-(4-(sulfonamidesubtituted)phenyl)-4-oxoazitidin-2-yl)-3-methyl-1-(p-tolyl)-1H-pyrazol-5(4H)One as Antibacterial, and Antioxidant Candidates.Current Chemistry Letters, 13(2), 315-324.
Refrences
1. Yotphan, S., Sumunnee, L., Beukeaw, D., Buathongjan, C. & Reutrakul, V. (2016) Iodine-catalyzed expeditious synthesis of sulfonamides from sulfonyl hydrazides and amines. Org. Biomol. Chem. 14, 590–597.
2. Irshad, M. et al. (2016) Synthesis, biological screening and molecular docking studies of some ethylated sulfonamides having 1,4-Benzodioxane moiety. Pak. J. Pharm. Sci. 29, 1913–1925.
3. Variya, H. H., Panchal, V. & Patel, G. R. (2019) Synthesis and Biological Evolution of Sulfonamide Fused Azitidinone As Antibacterial and Antifungal Agents. 5, 1–17.
4. Variya, H. H., Panchal, V. & Patel, G. R. (2019) Synthesis and Spectral studies of 1,3 benzothiazole-2-thiol conjugated thiosemicarbazide as Antibacterial and Antifungal agents. Int. J. Res. Advent Technol. 7, 388–392.
5. Variya, H. H., Panchal, V. & Patel, G. R. (2019) Synthesis and characterization of 4-((5-bromo-1h-pyrazolo [3,4-b]pyridin-3-yl)amino)-n-(substituted)benzenesulfonamide as antibacterial, and antioxidant candidates. Curr. Chem. Lett. 8, 177–186.
6. Variya, H. H., Panchal, V. & Patel, G. R. (2020) Synthesis, anti-tuberculosis and anti-bacterial activities of sulfonamide bearing 4-((2-(5-bromo-1H-pyrazolo[3,4-b]pyridin-1-yl)-2-oxoethyl)amino)-N-(various substitutions)benzenesulfonamide. Indian J. Chem. - Sect. B Org. Med. Chem. 59 B, 682–689.
7. Supuran, C. T., Casini, A. & Scozzafava, A. (2003) Protease inhibitors of the sulfonamide type: Anticancer, anti-inflammatory, and antiviral agents. Med. Res. Rev. 23, 535–558.
8. Garaj, V. et al. (2004) Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides incorporating 1, 2, 4-triazine moieties. Bioorg. Med. Chem. Lett. 14, 5427–5433.
9. Supuran, C. T. (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 7, 168.
10. Chen, Z. et al. (2015) Design, synthesis, biological evaluation and molecular modeling of dihydropyrazole sulfonamide derivatives as potential COX-1/COX-2 inhibitors. Bioorg. Med. Chem. Lett. 25, 1947–1951.
11. Ebrahimi, H., Hadi, J. S. & Al-Ansari, H. S. (2013) A new series of Schiff bases derived from sulfa drugs and indole-3-carboxaldehyde: Synthesis, characterization, spectral and DFT computational studies. J. Mol. Struct. 1039, 37–45.
12. Krátký, M. et al. (2012) Antimicrobial activity of sulfonamides containing 5-chloro-2- hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. Eur. J. Med. Chem. 50, 433–440.
13. Vellaiswamy, G. & Ramaswamy, S. (2014) Synthesis, spectral characterization and antimicrobial screening of novel Schiff bases from sulfa drugs. Int. J. Pharm. Pharm. Sci. 6, 487–491.
14. Elander, R. P. (2003) Industrial production of β-lactam antibiotics. Appl. Microbiol. Biotechnol. 61, 385–392.
15. Townsend, C. A. (2016) Convergent biosynthetic pathways to β-lactam antibiotics. Curr. Opin. Chem. Biol. 35, 97–108.
16. Pori, M. et al. (2013) Azetidinone-retinoid hybrids: Synthesis and differentiative effects. Eur. J. Med. Chem. 70, 857–863.
17. Arya, N. et al. (2014) The chemistry and biological potential of azetidine-2-ones. Eur. J. Med. Chem. 74, 619–656.
18. Mehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010) 2-Azetidinone - A new profile of various pharmacological activities. Eur. J. Med. Chem. 45, 5541–5560.
19. Vashi, K. & Naik, H. B. (2004) Synthesis of Novel Schiff Base and Azetidinone Derivatives and their Antibacterial Activity. E-Journal Chem. 1, 272–275.
20. Staudinger, H. (1907) Zur Kenntniss der Ketene. Diphenylketen. Justus Liebigs Ann. Chem. 356, 51–123.
21. Malig, T. C., Yu, D. & Hein, J. E. (2018) A Revised Mechanism for the Kinugasa Reaction. J. Am. Chem. Soc. 140, 9167–9173.
22. Jasiński, R. (2015) A new mechanistic insight on β-lactam systems formation from 5-nitroisoxazolidines. RSC Adv. 5, 50070–50072.
23. Bhat, I. K., Mishra, S. K., James, J. P. & Shastry, C. S. (2011) Antimicrobial studies of synthesized azetidinone derivatives from sulfamethoxazole moiety. J Chem Pharm Res 3, 114–118.
24. Guanti, G. et al. (1998) A new class of cis-monobactam derivatives bearing a sulfamoyloxymethyl or an N-alkylsulfamoyloxymethyl group at position 4: synthesis and antibacterial activity. Farm. 53, 173–180.
25. Saeedi, M. et al. (2014) Synthesis and biological investigation of some novel sulfonamide and amide derivatives containing coumarin moieties. Iran. J. Pharm. Res. 13, 881–892.
26. Göçer, H., Akincioǧlu, A., Öztaşkin, N., Göksu, S. & Gülçin, I. (2013) Synthesis, antioxidant, and antiacetylcholinesterase activities of sulfonamide derivatives of dopamine-related compounds. Arch. Pharm. (Weinheim). 346, 783–792.
27. Behbehani, G. R., Hossaini Sadr, M., Nabipur, H. & Barzegar, L. (2013) A comparative study on the interaction of sulfonamide and nanosulfonamide with human serum albumin. J. Chem. 2013,.
28. Husnain, S. et al. (2016) Evaluation of in vitro antioxidant and thrombolytic studies of some N -acetamide derivatives. 8, 424–431.
29. Jasiński, R. (2016) A reexamination of the molecular mechanism of the Diels–Alder reaction between tetrafluoroethene and cyclopentadiene. React. Kinet. Mech. Catal. 119, 49–57.
30. Jasiński, R. (2021) On the question of stepwise [4+2] cycloaddition reactions and their stereochemical aspects. Symmetry (Basel). 13, 1911.