How to cite this paper
Ghani, S & Hussain, I. (2021). Dates (Phoenix Dactylifera L.) extracts derived nanoparticles and its application.Current Chemistry Letters, 10(3), 235-254.
Refrences
1. Khan A., Rashid R., Murtaza G., and Zahra A. (2014) A gold nanoparticles: synthesis and applications in drug delivery. Trop. J. Pharm. Res., 13 (7) 1169-1177.
2. Lee S. H., Rho W. Y., Park S. J., Kim J., Kwon O. S., and Jun B. H. (2018) Multifunctional self- assembled monolayers via microcontact printing and degas-driven flow guided patterning. Sci. Rep., 8 (1) 16763.
3. Lee S. H., and Jun B. H. (2019) Silver nanoparticles: synthesis and application for nanomedicine. Int. J. Mol. Sci., 20 (4) 865.
4. Antonyraj C. A., Jeong J., Kim B., Shin S., Kim S., Lee K. Y., and Cho J. K. (2013) Selective oxidation of HMF to DFF using Ru/calumina catalyst in moderate boiling solvents toward industrial production. J. Ind. Eng. Chem., 19 (3) 1056-1059.
5. Frances N., Nikolay A. P., Michael J. F. B., Tim G., and Paul A. M. (2009) Novel one-pot synthesis and characterization of bioactive thiol-silicate nanoparticles for biocatalytic and biosensor applications. Nanotechnology, 20 (5) 055612.
6. Staniland S. S. (2007) Magnetosomes: Bacterial Biosynthesis of Magnetic Nanoparticles and Potential Biomedical Applications. In: Nanotechnologies for the Life Sciences. Wiley-VCH Verlag GmbH & Co. KGaA.
7. Green S. J., Pietron J. J., Stokes J. J., Hostetler M. J., Vu H., Wuelfing W. P., and Murray R. W. (1998) Three-dimensional monolayers: voltammetry of alkanethiolate stabilized gold cluster molecules. Langmuir, 14 (19) 5612-5619.
8. Brust M., Walker, M., Bethell D., Schiffrin D. J., and Whyman R. (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun., 7 801-802.
9. Sahoo G. P., Bar H., Bhui D. K., Sarkar P., Samanta S., Pyne S., Ash S., and Misra A. (2011) Synthesis and photo physical properties of star shaped gold nanoparticles. Colloid. Surf. A, 375 (1-3) 30-34.
10. Hu J., Wang Z., and Li J. (2007) Gold nanoparticles with special shapes: controlled synthesis, surface-enhanced Raman scattering, and the application in biodetection. Sensors, 7 (12) 3299-3311.
11. Xu F., Zhang Q., and Gao Z. (2013) Simple one-step synthesis of gold nanoparticles with controlled size using cationic Gemini surfactants as ligands: Effect of the variations in concentrations and tail lengths. Colloid. Surf. A, 417 201-210.
12. Biswal J., Ramnani S. P., Shirolikar S., and Sabharwal S. (2011) Synthesis of rectangular plate like gold nanoparticles by in situ generation of seeds by combining both radiation and chemical methods. Radiat. Phys. Chem., 80 (1) 44-49.
13. Ackerson C. J., Jadzinsky P. D., Sexton J. Z., Bushnell D. A., and Kornberg R. D. (2010) Synthesis and bioconjugation of 2 and 3 nm-diameter gold nanoparticles. Bioconjugate Chem., 21 (2) 214-218.
14. Zoroddu M. A., Medici S., Ledda A., Nurchi V. M., Lachowicz J. I., and Peana M. (2014)
Toxicity of Nanoparticles. Curr. Med. Chem., 21 (33) 3837-3853.
15. Zhang L., Bai R., Liu Y., Meng L., Li B., Wang L., Xu L., Le Guyader L., and Chen C.
(2012) The dose-dependent toxicological effects and potential perturbation on the
neurotransmitter secretion in brain following intranasal instillation of copper nanoparticles.
Nanotoxicology, 6 (5) 562-575.
16. Sajid M., Ilyas M., Basheer C., Tariq M., Daud M., Baig N., and Shehzad F. (2015) Impact
of nanoparticles on human and environment: review of toxicity factors, exposures, control
strategies, and future prospects. Environ. Sci. Pollut. Res. Int., 22 (6) 4122-4143.
17. Sawicki K., Czajka M., Kucharek M. M., Fal B., Drop B., Wielgosz S. M., Sikorska K.,
Kruszewski M., and Skrzypczak L. K. (2019) Toxicity of metallic nanoparticles in the
central nervous system. Nanotechnol. Rev., 8 (1) 175-200.
18. Han D., Tian Y., Zhang T., Ren G., and Yang Z. (2011) Nano-zinc oxide damages spatial
cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar
rats. Int. J. Nanomedicine, 6 1453-1461.
19. Oszlánczi G., Vezér T., Sárközi L., Horváth E., Kónya Z., and Papp A. (2010) Functional
neurotoxicity of Mn-containing nanoparticles in rats. Ecotoxicol. Environ. Saf., 73 (8) 2004-
2009.
20. Singh S. P., Rahman M. F., Murty U. S., Mahboob M., and Grover P. (2013) Comparative
study of genotoxicity and tissue distribution of nano and micron sized iron oxide in rats after
acute oral treatment. Toxicol. Appl. Pharmacol., 266 (1) 56-66.
21. Papp A., Oszlánczi G., Horváth E., Paulik E., Kozma G., Sápi A., Kónya Z., and Szabó A.
(2012) Consequences of subacute intratracheal exposure of rats to cadmiumoxide
nanoparticles: Electrophysiological and toxicological effects. Toxicol. Ind. Health, 28 (10) 933-
941.
22. Ray P. C., Yu H., and Fu P. P. (2009) Toxicity and environmental risks of nanomaterials:
challenges and future needs. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev.,
27 (1) 1-35.
23. Griffitt R. J., Luo J., Gao J., Bonzongo J. C., and Barber D. S. (2008) Effects of particle
composition and species on toxicity of metallic nanomaterials in aquatic organisms.
Environ. Toxicol. Chem., 27 (9) 1972-1978.
24. Pernodet N., Fang X., Sun Y., Bakhtina A., Ramakrishnan A., Sokolov J., Ulman A., and
Rafailovich M. (2006) Adverse effects of citrate/gold nanoparticles on human dermal
fibroblasts. Small, 2 (6) 766-773.
25. Karlsson H. L., Cronholm P., Gustafsson J., and Moller L. (2008) Copper oxide
nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and
carbon nanotubes. Chem. Res. Toxicol., 21 (9) 726-1732.
26. Rajakumar G., Gomathi T., Thiruvengadam M., Rajeswari V. D., Kalpana V. N., and
Chung I. M. (2017) Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities
of green synthesized silver nanoparticles using from Millettia pinnata flower extract.
Microb. Pathog., 103 123-128.
27. Ahmed S., Ahmad M., Swami B. L., and Ikram S. (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res., 7 (1) 17-28.
28. Velusamy P., Kumar G. V., Jeyanthi V., Das J., and Pachaiappan R. (2016) Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol. Res., 32 (2) 95-102.
29. Raghunandan D., Bedre M. D., Basavaraja S., Sawle B., Manjunath S. Y., and Venkataraman A. (2010) Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids Surf. B Biointerfaces, 79 (1) 235-240.
30. Benakashani F., Allafchian A. R., and Jalali S. A. H. (2016) Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity. Karbala International Journal of Modern Science, 2 (4) 251-258.
31. Phongtongpasuk S., Poadang S., and Yongvanich N. (2016) Environmental-friendly method for synthesis of silver nanoparticles from dragon fruit peel extract and their antibacterial activities. Energy Procedia, 89 239-247.
32. Satishkumar M., Sneha K., Won S. W., Cho C. W., Kim S., and Yun Y. S. (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its antibacterial activity. Colloids Surf. B Biointerfaces, 73 (2) 332-338.
33. Annu A. S., Kaur G., Sharma P., Singh S., and Ikram S. (2018) Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities. J. Appl. Biomed., 16 (3) 221-231.
34. Ahmad N., Sharma S., Alam M. K., Singh V. N., Shamsi S. F., Mehta B. R., and Fatma A. (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B Biointerfaces, 81 (1) 81-86.
35. Dakshayani S. S., Marulasiddeshwara M. B., Kumar M. N. S., Ramesh G., Kumar P. R., Devarajac S., and Hosamani R. (2019) Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using Selaginella (Sanjeevini) plant extract. Int. J. Biol. Macromol., 131 787-797.
36. Skiba M. I., Vorobyova M. I., Pivovarov A., and Makarshenko N. P. (2020) Green synthesis of silver nanoparticles in the presence of polysaccharide: optimization and characterization. J. Nanomater., 2020 3051308.
37. Ahmad, D. S. (2011) Review: natural products from Genus Selaginella (Selaginellaceae). Nus. Biosci., 3 (1) 44-58.
38. Blazics B., Alberti A., and Kery A. (2009) Antioxidant activity of different phenolic fractions separated from Euphrasia rostkoviana hayne. Acta. Pharm. Hung., 79 (1) 11-16.
39. Petrichenko V. M., Sukhinina T. V., Babiyan L. K., and Shramm N. I. (2006) Chemical composition and antioxidant properties of biologically active compounds from Euphrasia brevipila. Pharm. Chem. J., 40 312-316.
40. Ahmed M. J., Murtaza G., Mehmood A., and Bhatti T. M. (2015) Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: characterization and antibacterial activity. Mater. Lett., 153 10-13.
41. Sankar R., Karthik A., Prabu A., Karthik S., Shivashangari K. S., and Ravikumar V. (2013) Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf. B Biointerfaces, 108 80-84.
42. Qu D., Sun W., Chen Y., Zhou J., and Liu C. (2014) Synthesis and in vitro antineoplastic evaluation of silver nanoparticles mediated by Agrimoniae herba extract. Int. J. Nanomed., 9 (1) 1871-1882.
43. Ahmad N., Bhatnagar S., Ali S. S., and Dutta R. (2015) Phytofabrication of bioinduced silver nanoparticles for biomedical applications. Int. J. Nanomed., 10 (1) 7019-7030.
44. Farhadi S., Ajerloo B., and Mohammadi A. (2017) Green biosynthesis of spherical silver nanoparticles by using date palm (phoenix dactylifera) fruit extract and study of their antibacterial and catalytic activities. Acta Chim. Slov., 64 (1) 129-143.
45. Ashraf Z., and Hamidi E. Z. (2011) Date and date processing: a review. Food Rev. Int., 27 (2) 101-133.
46. Jaradat A. A., and Zaid A. (2004) Quality traits of date palm fruits in a center of origin and center of diversity. J. Food Agric. Environ., 2 (1) 208-217.
47. Barghini P., Gioia D. D., Fava F., and Ruzzi M. (2007) Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb. Cell Fact, 6 (1) 13.
48. Martín-Sánchez A. M., Cherif S., Ben-Abda J., Barber-Vallés X., Pérez-Álvarez J. Á., and Sayas-Barberá E. (2014) Phytochemicals in date co-products and their antioxidant activity. Food Chem., 158 513-520.
49. Sosnowska J., and Balslev H. (2009) American palm ethnomedicine: A meta-analysis, J. Ethnobiol. Ethnomed., 5 43-53.
50. Benmeddour Z., Mehinagic E., Meurlay D. L., and Louaileche H. (2013) Phenolic composition and antioxidant capacities of ten Algerian Date (Phoenix dactylifera L.) cultivars: A comparative study. J. Funct. Foods, 5 (1) 346-354.
51. Salem A. O. M., Rhouma S., Zehdi S., Marrakchi M., and Trifi M. (2008) Morphological variability of Mauritanian date-palm (Phoenix dactylifera L.) cultivars as revealed by vegetative traits. Acta Bot. Croat., 67 (1) 81-90.
52. Al-Oqla F. M., and Sapuan S. M. (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J. Cleaner Prod., 66 347-354.
53. Karar M. G. E., and Kuhnert N. (2017) Herbal drugs from Sudan: traditional uses and phytoconstituents. Pharmacogn. Rev., 11 (22) 83-103.
54. Aryangat A. V., and Gerich J. E. (2010) Type 2 diabetes: postprandial hyperglycemia and increased cardiovascular risk. Vasc. Health Risk Manag., 6 145-155.
55. Besbes S., Ghorbel R., Salah R. B., Masmoudi M., Jedidi F., Attia H., and Blecker C. (2010) Date fiber concentrate: chemical compositions, functional properties and effect on quality characteristics of beef burgers. J. Food Drug Anal., 18 (1) 8-14.
56. Hasan M., and Mohieldein A. (2016) In vivo evaluation of anti diabetic, hypolipidemic, antioxidative activities of Saudi date seed extract on streptozotocin induced diabetic rats. J. Clin. Diagn. Res., 10 (3) 06-12.
57. Zafar S., and Zafar A. (2019) Biosynthesis and characterization of silver nanoparticles using phoenix dactylifera fruits extract and their in vitro antimicrobial and cytotoxic effects. Open Biotechnol. J., 13 37-46.
58. Al-Radadi N.S. (2019) Green synthesis of platinum nanoparticles using Saudi's Dates extract and their usage on the cancer cell treatment. Arabian J. Chem., 12 (3) 330-349.
59. Abusahid Z., and Kandiah M. (2019) In Vitro Green synthesis of phoenix dactylifera silver nanoparticles: assessing their antioxidant and antimicrobial properties. Int. J. Nanosci., 18 (5) 1850031.
60. Zaheer Z. (2017) Biogenic synthesis, optical, catalytic, and in vitro antimicrobial potential of Ag nanoparticles prepared using Palm date fruit extract. J. Photochem. Photobiol. B Biol., 178 584-592.
61. Mohamed E. A. (2020) Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon, 6 (1) e03123.
62. Aitenneite H., Abboud Y., Tanane O., Solhy A., Sebti S., and El-Bouari A. (2016) A Rapid and green microwave-assisted synthesis of silver nanoparticles using aqueous Phoenix Dactylifera L. (date palm) leaf extract and their catalytic activity for 4-Nitrophenol reduction. J. Mater. Environ. Sci., 7 (7) 2335-2339.
63. Zayed M. F., and Eisa W. H. (2014) Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles, controlled synthesis and catalytic activity. Spectrochim. Acta Part A, 121 238-244.
64. Ismail M. S., Abuzaid O. I., and El-Ashmawy I. M. (2017) Effect of aqueous extract of tops of date palm leaves on blood glucose of diabetic rats. Pak. J. Pharm. Sci., 30 (5) 20317-22037.
65. Rashid M. I., Mujawar L. H., Rehan Z. A., Qari H., Zeb J., Almeelbi T., and Ismail I. M. I. (2016) One-step synthesis of silver nanoparticles using Phoenix dactylifera leaves extract and their enhanced bactericidal activity. J. Mol. Liq., 223 1114-1122.
66. Salama A. A., Ismael N. M., and Megeed M. M. (2019) Using date seed powder nanoparticles and infusion as a sustainable source of nutraceuticals. J. Food Nutr. Sci., 7 (3) 39-48.
67. Bouhlali E. D. T., Alem C., Ennassir J., Benlyas M., Mbark A. N., and Zegzouti Y. F. (2017) Phytochemical compositions and antioxidant capacity of three Date (Phoenix dactylifera L.) seeds varieties grown in the South East Morocco. J. Saudi Soc. Agric. Sci., 16 (4) 350-357.
68. Khatami M., and Pourseyedi S. (2015) Phoenix dactylifera (date palm) pit aqueous extract mediated novel route for synthesis high stable silver nanoparticles with high antifungal and antibacterial activity. IET Nanobiotechnol., 9 (4) 184-190.
69. El-Naggar M. E., Shaarawy S., and Hebeish A. A. (2017) Multifunctional properties of cotton fabrics coated with in situ synthesis of Zinc oxide nanoparticles capped with date seed extract. Carbohydr. Polym., 181 307-316.
70. Sathishkumar M., Sneha K., Kwak I. S., Mao J., Tripathy S. J., and Yun Y. S. (2009) Phyto-crystallization of Palladium Through Reduction Process Using Cinnamon Zeylanicum Bark Extract. J. Hazard Mater., 171 (1-3) 400-404.
71. Yang X., Li Q., Wang H., Huang J., Lin L., Wang W., Sun D., Su Y., Opiyo J. B., Hong L., Wang Y., He N., and Jia L. (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J. Nanopart. Res., 12 1589-1598.
72. Charti I., Eddahbi A., Abboud Y., and El Bouari A. (2017) Rapid and green microwave-assisted synthesis of silver nanoparticles using aqueous phoenix dactylifera l. (date palm) wood extract and evaluation of catalytic and antibacterial activities. Micro Nanosyst., 9 (2) 134-139.
73. Shaikh A. E., Satardekar K. V., Khan R. R., Tarte N. A., and Barve S. S. (2018) Silver nanoparticles: green synthesis using Phoenix dactylifera fruit extract, characterization, and antioxidant and antimicrobial activities. Appl. Nanosci., 8 407-415.
74. Mohammed A. E., Al-Qahtani A., Al-Mutairi A., Al-Shamri B., and Aabed K. (2018) Antibacterial and cytotoxic potential of biosynthesized silver nanoparticles by some plant extracts. Nanomaterials, 8 (6) 382.
75. Das P., and Karankar V. S. (2019) New avenues of controlling microbial infections through antimicrobial and anti-biofilm potentials of green mono-and multi-metallic nanoparticles: A review. J. Microbiol. Methods, 167 105766.
76. Nanaei M., Nasseri M. A., Allahresani A., and Kazemnejadi M. (2019) Phoenix dactylifera L. extract: antioxidant activity and its application for green biosynthesis of Ag nanoparticles as a recyclable nanocatalyst for 4-nitrophenol reduction. SN Appl. Sci., 1 853.
77. Athinarayanan J., Periasamy V. S., and Alshatwi A. A. (2019) Phoenix dactylifera lignocellulosic biomass as precursor for nanostructure fabrication using integrated process. Int. J. Biol. Macromol., 134 1179-1186.
78. Dwivedi A. D., and Gopal K. (2011) Plant-mediated biosynthesis of silver and gold nanoparticles. J. Biomed. Nanotechnol., 7 (1) 163-164.
79. Biçer M., and Sisman I. (2010) Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution. Powder Technol., 198 (2) 279-284.
80. Awad M. A. G., Al-Olayan E. M., Yehia H. M., Ortashi K. M. O., Ali H. S. M., and Elkhadragy M. F. (2017) Method of preparing date palm seed nanoparticles. US Patent 9623067B1.
81. Ansari M. A., and Alzohairy M. A. (2018) One-pot facile green synthesis of silver nanoparticles using seed extract of phoenix dactylifera and their bactericidal potential against MRSA. Evid. Based Complement. Alternat. Med., 2018 1860280.
82. Alajmi R. A., Al-Megrin W. A., Metwally D., Al-Subaie H., Altamrah N., Barakat A. M., Al-Moneim A. E., Al-Otaibi T. T., and El-Khadragy M. (2019) Anti-Toxoplasma activity of silver nanoparticles green synthesized with Phoenix dactylifera and Ziziphus spina-christi extracts which inhibits inflammation through liver regulation of cytokines in Balb/c mice. Biosci. Rep., 39 (5) BSR20190379.
83. Mohammadi G., Zangeneh M. M., Zangeneh A., and Haghighi Z. M. S. (2020) Chemical characterization and anti‐breast cancer effects of silver nanoparticles using Phoenix dactylifera seed ethanolic extract on 7,12‐Dimethylbenz[anthracene]‐induced mammary gland carcinogenesis in sprague dawley male rats. Appl. Organometal. Chem., 34 (1) e5136.
84. Qidwai A., Kumar R., and Dikshit A. (2018) Green synthesis of silver nanoparticles by seed of Phoenix sylvestris L. and their role in the management of cosmetics embarrassment. Green Chem. Lett. Rev., 11 (2) 176-188.
85. Tahir K., Nazir S., Ahmad A., Li B., Khan A. U., Shah S. A. A., Khan G. M., Khan Z. U. H., Khan Q., and Khan F. U. (2016) Biodirected synthesis of palladium nanoparticles using Phoenix dactylifera leaves extract and their size dependent biomedical and catalytic applications. RSC Adv., 6 (89) 85903-85916.
86. Ziouti A., Modafar C. E., Fleuriet A., Boustani S. E., and Macheix J. J. (1996) Phenolic compounds in date palm cultivars sensitive and resistant to Fusarium oxysporum. Biol. Plant., 38 (3) 451-457.
87. Feldheim D. L., and Foss C. A. (2002) Metal nanoparticles: synthesis, characterization, and applications. CRC Press: Boca Raton, FL, USA.
88. Tomaszewska E., Soliwoda K., Kadziola K., Celichowski G., Cichomski M., Szmaja W., and Grobelny J. (2013) Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomater., 2013 313081.
89. Noruzi M. (2015) Biosynthesis of gold nanoparticles using plant extracts. Bioprocess. Biosyst. Eng., 38 (1) 1-14.
90. Sharma V. K., Yngard R. A., and Lin Y. (2009) Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 145 (1-2) 83-96
91. Luo C., Zhang Y., and Wang Y. (2005) Palladium nanoparticles in poly(ethyleneglycol): the efficient and recyclable catalyst for Heck reaction. J. Mol. Catal. A Chem., 229 (1-2) 7-12.
92. Chithrani B. D., Ghazani A. A., and Chan W. C. W. (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 6 (4) 662-668.
93. Jiang J., Oberdörster G., Biswas P. (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res., 11 77-89.
94. Berne B. J., and Pecora R. (2000) Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, Dover, New York, NY, USA.
95. Jans H., Liu X., Austin L., Maes G., and Huo Q. (2009) Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal. Chem., 81 (22) 9425-9432.
96. Tran Q. H., Nguyen V. Q., and Le A. (2013) Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol., 4 (3) 033001.
97. Ezhilarasi A. A., Vijaya J. J., Kennedy L. J., and Kaviyarasu K. (2020) Green mediated NiO nano-rods using Phoenix dactylifera (Dates) extract for biomedical and environmental applications. Mater. Chem. Phys., 241 122419.
98. Oves M., Aslam M., Rauf M. A., Qayyum S., Qari H. A., Khan M. S., Alam M. Z., Tabrez S., Pugazhendhi A., and Ismail I. M. I. (2018) Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mat. Sci. Eng. C, 89 429-443.
99. Banu H., Renuka N., Faheem S. M, Ismail R, Singh V., Saadatmand Z., Khan S. S., Narayanan K., Raheem A., Premkumar K., and Vasanthakumar G. (2018) Gold and silver nanoparticles biomimetically synthesized using date palm pollen extract-induce apoptosis and regulate p53 and bcl-2 expression in human breast adenocarcinoma cells. Biol. Trace Elem. Res., 186 (1) 122-134.
100. Eppler A. S., Rupprechter G., Anderson E. A., and Somorjai G. A. (2000) Thermal and chemical
stability and adhesion strength of Pt nanoparticle arrays supported on silica studied by
transmission electron microscopy and atomic force microscopy. J. Phys. Chem. B, 104 (31) 7286-
7292.
101. Huang J., Li Q., Sun D., Lu Y., Su Y., and Yang X. (2007) Biosynthesis of silver and gold
nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18 105104-
105114.
102. Waseda Y., Matsubara E., and Shinoda K. (2011) X-Ray Diffraction Crystallography. Springer
Berlin.
103. Prathna T. C., Chandrasekaran N., Raichur A. M., and Mukherjee A. (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B Biointerfaces, 82 (1) 152-159.
104. Victor S. U., and Roberto V. B. J. (2015) Gold and silver nanotechnology on medicine. J. Chem.
Biochem., 3 (1) 21-33.
105. Lin M., Pei H., Yang F., Fan C., and Zuo X. (2013) Applications of gold nanoparticles in the
detection and identification of infectious diseases and biothreats. Adv. Mater., 25 (25) 3490-3496.
106. Mohamed D. A. and Al-Okbi S. (2005) In vitro evaluation of antioxidant activity of different
extracts of Phoenix dactylifera L. fruits as functional foods. Dtsch. Lebensm. Rundsch., 101 305-
308.
107. Allaith A. A. A. (2008) Antioxidant activity of Bahraini date palm (Phoenix dactylifera L.) fruit of various cultivars. Int. J. Food Sci. Technol., 43 (6) 1033-1040.
108. Mansouri A., Embarek G., Kokkalou E., and Kefalas P. (2005) Phenolic profile and
antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chem.,
89 (3) 411-420.
109. Al-Turki S., Shahba M. A., and Stushnoff C. J. (2010) Diversity of antioxidant properties
and phenolic content of date palm (Phoenix dactylifera L.) fruits as affected by cultivar and
location. J. Food Agri. Environ., 8 (1) 253-260.
110. Lemine F. M. M., Ahmed M. V. O. M., Maoulainine L. B. M., Bouna Z. E. A. O., Samb A., and
Boukhary A. O. M. S. (2014) Antioxidant activity of various Mauritanian date palm (Phoenix
dactylifera L.) fruits at two edible ripening stages. Food Sci. Nutr., 2 (6) 700-705.
111. Chaira N., Smaali M. I., Martinez-Tomé M., Mrabet A., Murcia M. A., Ferchichi A. (2009)
Simple phenolic composition, flavonoid contents and antioxidant capacities in water-
methanol extracts of Tunisian common date cultivars (Phoenix dactylifera L.). Int. J. Food
Sci. Nutr., 60 (7) 316-329.