How to cite this paper
Khoshkarvandani, S., Fazaeli, R., Saravani, M & Pasdar, H. (2021). Mesoporous MCM-41 modified with Cu(II) for indole removal: A Taguchi design.Current Chemistry Letters, 10(1), 1-8.
Refrences
1 Liu, Y., Wang, L., Huang, Z., Wang, X., Zhao, X., Ren, Y., Ma, J. (2018). Oxidation of odor compound indole in aqueous solution with ferrate (VI): Kinetics, pathway, and the variation of assimilable organic carbon. Chemical Engineering Journal, 331, 31-38.
2 Chen, J., De Crisci, A. G., & Xing, T. (2016). Review on catalysis related research at CanmetENERGY. The Canadian Journal of Chemical Engineering, 94(1), 7-19.
3 Wu, Y. C., Yang, X. F., & Hao, L. (2017). Improved oxygen optical sensing performance from Re (I) complex doped MCM-41 composite samples by incorporating oxadiazole ring into diamine ligand: synthesis, characterization and sensing response. Sensors and Actuators B: Chemical, 244, 1113-1120.
4 Liew, K. Y., Yee, A. H., & Nordin, M. R. (1993). Adsorption of carotene from palm oil by acid‐treated rice hull ash. Journal of the American Oil Chemists' Society, 70(5), 539-541.
5 Fard, N. E., Fazaeli, R., Yousefi, M., & Abdolmohammadi, S. (2019). Morphology‐Controlled Synthesis of CuO, CuO Rod/MWW Composite for Advanced Oxidation of Indole and Benzothiophene. ChemistrySelect, 4(33), 9529-9539.
6 Yao, Q., Xu, L., Han, Z., & Zhang, Y. (2015). Production of indoles via thermo-catalytic conversion and ammonization of bio-derived furfural. Chemical Engineering Journal, 280, 74-81.
7 Linhares, M., Rebelo, S. L., Simões, M. M., Silva, A. M., Neves, M. G. P., Cavaleiro, J. A., & Freire, C. (2014). Biomimetic oxidation of indole by Mn (III) porphyrins. Applied Catalysis A: General, 470, 427-433.
8 Liu, Y., Wang, L., Huang, Z., Wang, X., Zhao, X., Ren, Y., Ma, J. (2018). Oxidation of odor compound indole in aqueous solution with ferrate (VI): Kinetics, pathway, and the variation of assimilable organic carbon. Chemical Engineering Journal, 331, 31-38.
9 Zhou, X. R., Hong, M. A., FU, X. M., YAO, C. B., & XIAO, J. Q. (2010). Catalytic oxidation of carbazole using t-butyl hydroperoxide over molybdenum catalysts. Journal of Fuel Chemistry and Technology, 38(1), 75-79.
10 Chester, A. W., & Derouane, E. G. (2009). Zeolite characterization and catalysis (Vol. 360). New York, EUA: Springer.
11 Lee, S. Y., & Park, S. J. (2013). Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. Journal of colloid and interface science, 389(1), 230-235.
12 Perot, G., & Guisnet, M. (1990). Advantages and disadvantages of zeolites as catalysts in organic chemistry. Journal of Molecular Catalysis, 61(2), 173-196.
13 Rayati, S., Ruzbahani, S. E., & Nejabat, F. (2017). A Comparative Study of Catalytic Activity of Fe, Mn and Cu Porphyrins Immobilized on Mesoporous MCM-41 in Oxidation of Sulfides. Macroheterocycles, 10(1), 62-67.
14 Nikoorazm, M., Ghorbani-Choghamarani, A., & Khanmoradi, M. (2016). Synthesis and characterization of Ni (ii)–Vanillin–Schiff base–MCM-41 composite as an efficient and reusable nanocatalyst for multicomponent reactions. RSC Advances, 6(61), 56549-56561.
15 Wei, X. N., Wang, H. L., Li, Z. D., Huang, Z. Q., Qi, H. P., & Jiang, W. F. (2016). Fabrication of the novel core-shell MCM-41@ mTiO2 composite microspheres with large specific surface area for enhanced photocatalytic degradation of dinitro butyl phenol (DNBP). Applied Surface Science, 372, 108-115.
16 Kashi, N., Fard, N. E., & Fazaeli, R. (2017). Empirical modeling and CCD-based RSM optimization of Cd (II) adsorption from aqueous solution on clinoptilolite and bentonite. Russian Journal of Applied Chemistry, 90(6), 977-992.
17 Tamoradi, T., Ghadermazi, M., & Ghorbani-Choghamarani, A. (2018). Highly efficient, green, rapid, and chemoselective oxidation of sulfur-containing compounds in the presence of an MCM-41@ creatinine@ M (M= La and Pr) mesostructured catalyst under neat conditions. New Journal of Chemistry, 42(7), 5479-5488.
18 Taguchi, G. (1990). Introduction to Quality Engineering, Tokyo. Asian Productivity Organization.4(2), 10-15.
19 Fard, N. E., & Fazaeli, R. (2018). Optimization of Operating Parameters in Photocatalytic Activity of Visible Light Active Ag/TiO 2 Nanoparticles. Russian Journal of Physical Chemistry A, 92(13), 2835-2846.
20 Nikoorazm, M., & Ghobadi, M. (2019). Cu-SBTU@ MCM-41: As an Efficient and Reusable Nanocatalyst for Selective Oxidation of Sulfides an Oxidative Coupling of Thiols. Silicon, 11(2), 983-993.
21 Brazlauskas, M., & Kitrys, S. (2008). Synthesis and properties of CuO/Zeolite sandwich type adsorbent-catalysts. Chinese Journal of Catalysis, 29(1), 25-30.
22 Ghorbani, M., & Nowee, S. M. (2016). Kinetic study of Pb (II) and Ni (II) adsorption onto MCM-41 amine-functionalized nano particle. Advances in environmental technology, 2, 101-104.
2 Chen, J., De Crisci, A. G., & Xing, T. (2016). Review on catalysis related research at CanmetENERGY. The Canadian Journal of Chemical Engineering, 94(1), 7-19.
3 Wu, Y. C., Yang, X. F., & Hao, L. (2017). Improved oxygen optical sensing performance from Re (I) complex doped MCM-41 composite samples by incorporating oxadiazole ring into diamine ligand: synthesis, characterization and sensing response. Sensors and Actuators B: Chemical, 244, 1113-1120.
4 Liew, K. Y., Yee, A. H., & Nordin, M. R. (1993). Adsorption of carotene from palm oil by acid‐treated rice hull ash. Journal of the American Oil Chemists' Society, 70(5), 539-541.
5 Fard, N. E., Fazaeli, R., Yousefi, M., & Abdolmohammadi, S. (2019). Morphology‐Controlled Synthesis of CuO, CuO Rod/MWW Composite for Advanced Oxidation of Indole and Benzothiophene. ChemistrySelect, 4(33), 9529-9539.
6 Yao, Q., Xu, L., Han, Z., & Zhang, Y. (2015). Production of indoles via thermo-catalytic conversion and ammonization of bio-derived furfural. Chemical Engineering Journal, 280, 74-81.
7 Linhares, M., Rebelo, S. L., Simões, M. M., Silva, A. M., Neves, M. G. P., Cavaleiro, J. A., & Freire, C. (2014). Biomimetic oxidation of indole by Mn (III) porphyrins. Applied Catalysis A: General, 470, 427-433.
8 Liu, Y., Wang, L., Huang, Z., Wang, X., Zhao, X., Ren, Y., Ma, J. (2018). Oxidation of odor compound indole in aqueous solution with ferrate (VI): Kinetics, pathway, and the variation of assimilable organic carbon. Chemical Engineering Journal, 331, 31-38.
9 Zhou, X. R., Hong, M. A., FU, X. M., YAO, C. B., & XIAO, J. Q. (2010). Catalytic oxidation of carbazole using t-butyl hydroperoxide over molybdenum catalysts. Journal of Fuel Chemistry and Technology, 38(1), 75-79.
10 Chester, A. W., & Derouane, E. G. (2009). Zeolite characterization and catalysis (Vol. 360). New York, EUA: Springer.
11 Lee, S. Y., & Park, S. J. (2013). Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. Journal of colloid and interface science, 389(1), 230-235.
12 Perot, G., & Guisnet, M. (1990). Advantages and disadvantages of zeolites as catalysts in organic chemistry. Journal of Molecular Catalysis, 61(2), 173-196.
13 Rayati, S., Ruzbahani, S. E., & Nejabat, F. (2017). A Comparative Study of Catalytic Activity of Fe, Mn and Cu Porphyrins Immobilized on Mesoporous MCM-41 in Oxidation of Sulfides. Macroheterocycles, 10(1), 62-67.
14 Nikoorazm, M., Ghorbani-Choghamarani, A., & Khanmoradi, M. (2016). Synthesis and characterization of Ni (ii)–Vanillin–Schiff base–MCM-41 composite as an efficient and reusable nanocatalyst for multicomponent reactions. RSC Advances, 6(61), 56549-56561.
15 Wei, X. N., Wang, H. L., Li, Z. D., Huang, Z. Q., Qi, H. P., & Jiang, W. F. (2016). Fabrication of the novel core-shell MCM-41@ mTiO2 composite microspheres with large specific surface area for enhanced photocatalytic degradation of dinitro butyl phenol (DNBP). Applied Surface Science, 372, 108-115.
16 Kashi, N., Fard, N. E., & Fazaeli, R. (2017). Empirical modeling and CCD-based RSM optimization of Cd (II) adsorption from aqueous solution on clinoptilolite and bentonite. Russian Journal of Applied Chemistry, 90(6), 977-992.
17 Tamoradi, T., Ghadermazi, M., & Ghorbani-Choghamarani, A. (2018). Highly efficient, green, rapid, and chemoselective oxidation of sulfur-containing compounds in the presence of an MCM-41@ creatinine@ M (M= La and Pr) mesostructured catalyst under neat conditions. New Journal of Chemistry, 42(7), 5479-5488.
18 Taguchi, G. (1990). Introduction to Quality Engineering, Tokyo. Asian Productivity Organization.4(2), 10-15.
19 Fard, N. E., & Fazaeli, R. (2018). Optimization of Operating Parameters in Photocatalytic Activity of Visible Light Active Ag/TiO 2 Nanoparticles. Russian Journal of Physical Chemistry A, 92(13), 2835-2846.
20 Nikoorazm, M., & Ghobadi, M. (2019). Cu-SBTU@ MCM-41: As an Efficient and Reusable Nanocatalyst for Selective Oxidation of Sulfides an Oxidative Coupling of Thiols. Silicon, 11(2), 983-993.
21 Brazlauskas, M., & Kitrys, S. (2008). Synthesis and properties of CuO/Zeolite sandwich type adsorbent-catalysts. Chinese Journal of Catalysis, 29(1), 25-30.
22 Ghorbani, M., & Nowee, S. M. (2016). Kinetic study of Pb (II) and Ni (II) adsorption onto MCM-41 amine-functionalized nano particle. Advances in environmental technology, 2, 101-104.