How to cite this paper
Valinton, J., Son, J., Zafra, J., Santos, G., Promentilla, M & Yu, D. (2016). Isonicotinic acid-ligated cobalt (II) phthalocyanine-modified titania as photocatalyst for benzene degradation via fluorescent lamp.Current Chemistry Letters, 5(3), 93-98.
Refrences
Linsebigler, A., Lu, G., and Yates, J. (1995) Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev., 95 (3) 735-758.
2 Hashimoto, K., Irie, H. and Fujishima, A. (2005) TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys., 44 (12), 8269-8285.
3 Destaillats, H., Sleiman, M., Sullivan, D., Jaquinod, C., Sablayrolles, J. and Molins, L. (2012) Key parameters influencing the performance of photocatalytic oxidation (PCO) air purification under realistic conditions. App. Catalysis B: Environmental, 128, 159-170.
4 Kumar, S. and Devi, L. (2011) Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results on Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J. Phys. Chem. A., 115 (46) 13211-13241.
5 Wöhrle, D., Kaneko, M., Nagai, K., Suvorova, O. and Gerdes, R. (2009). Environmental Cleaning by Molecular Photocatalysts, in: Okada, T. and Kaneko, M. (Eds) Molecular Catalysts for Energy Conversion. Springer-Verlag, Heidelberg, 263-297.
6 Inabe, T. and Tajima, H. (2004). Phthalocyanines – Versatile Components of Molecular Conductors. Chem. Rev,, 104 (11), 5503-5534.
7 Iliev, V., Alexiev, V., and Bilyarska, L. (1999). Effect of metal phthalocyanine complex aggregation on catalytic and photocatalytic oxidation of sulfur containing compounds. J. Mol. Catalysis A: Chem., 137 (1-3) 15-22.
8 Iliev, V., Tomova, D., Bilyarska, L., Prahov, L. and Petrov. L. (2003). Phthalocyanine modified TiO2 or WO3 – catalysts for photooxidation of sulfide and thiosulfate ions upon irradiation with visible light. J. Photochem. Photobiol. A: Chem., 159 (3) 281-287.
9 Iliev, V. (2002). Phthalocyanine-modified titania – catalyst for photooxidation of phenol by irradiation with visible light. J. Photocchem. Photobiol. A: Chem., 151 (1-3), 195-199.
10 Wang, Z. Mao, W., Chen, H., Zhang, F., Fan, X. and Qian, G. (2006). Copper (II) phthalocyanine tetradulfonate sensitized nanocrystalline titania photocatalyst: Synthesis in situ and photocatalysis under visible light. Catalysis Communications, 7 (8), 518-522.
11 O’Regan, B., Lopez-Duarte, I., Martinez-Diaz, V., Forneli, A., Albero, J., Morandeira, A., Palomares, E., Torres, T. and Durrant, J.R. (2008). Catalysis of Recombination and its Limitation on Open Circuit Voltage for Dye Sensitized Photovoltaic Cells Using Phthalocyanine Dyes. J. Am. Chem. Soc., 130 (10) 2906-2907.
12 Paez-Mozo, E., Gabriunas, N., Maggi, R., Acosta, D., Ruiz, P., & Delmon, B. (1994). Selective olefin oxidation with cobalt phthalocyanine encapsulated in Y-zeolite. J. Mol. Catalysis, 91 (2) 251-258.
13 Zanotti, G., Angelini, N., Notarantonio, S., Paoletti, A.M., Pennesi, G., Rossi, G., Lembo, A., Colonna, D., Di Carlo, A., Reale A., Brown, T.M., & Calogero, G. (2010) Bridged phthalocyanine systems for sensitization of nanocrystalline TiO2 films. Int. J. Photoenergy, Accepted Manuscript (DOI: 10.1155/2010/136807)
2 Hashimoto, K., Irie, H. and Fujishima, A. (2005) TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys., 44 (12), 8269-8285.
3 Destaillats, H., Sleiman, M., Sullivan, D., Jaquinod, C., Sablayrolles, J. and Molins, L. (2012) Key parameters influencing the performance of photocatalytic oxidation (PCO) air purification under realistic conditions. App. Catalysis B: Environmental, 128, 159-170.
4 Kumar, S. and Devi, L. (2011) Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results on Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J. Phys. Chem. A., 115 (46) 13211-13241.
5 Wöhrle, D., Kaneko, M., Nagai, K., Suvorova, O. and Gerdes, R. (2009). Environmental Cleaning by Molecular Photocatalysts, in: Okada, T. and Kaneko, M. (Eds) Molecular Catalysts for Energy Conversion. Springer-Verlag, Heidelberg, 263-297.
6 Inabe, T. and Tajima, H. (2004). Phthalocyanines – Versatile Components of Molecular Conductors. Chem. Rev,, 104 (11), 5503-5534.
7 Iliev, V., Alexiev, V., and Bilyarska, L. (1999). Effect of metal phthalocyanine complex aggregation on catalytic and photocatalytic oxidation of sulfur containing compounds. J. Mol. Catalysis A: Chem., 137 (1-3) 15-22.
8 Iliev, V., Tomova, D., Bilyarska, L., Prahov, L. and Petrov. L. (2003). Phthalocyanine modified TiO2 or WO3 – catalysts for photooxidation of sulfide and thiosulfate ions upon irradiation with visible light. J. Photochem. Photobiol. A: Chem., 159 (3) 281-287.
9 Iliev, V. (2002). Phthalocyanine-modified titania – catalyst for photooxidation of phenol by irradiation with visible light. J. Photocchem. Photobiol. A: Chem., 151 (1-3), 195-199.
10 Wang, Z. Mao, W., Chen, H., Zhang, F., Fan, X. and Qian, G. (2006). Copper (II) phthalocyanine tetradulfonate sensitized nanocrystalline titania photocatalyst: Synthesis in situ and photocatalysis under visible light. Catalysis Communications, 7 (8), 518-522.
11 O’Regan, B., Lopez-Duarte, I., Martinez-Diaz, V., Forneli, A., Albero, J., Morandeira, A., Palomares, E., Torres, T. and Durrant, J.R. (2008). Catalysis of Recombination and its Limitation on Open Circuit Voltage for Dye Sensitized Photovoltaic Cells Using Phthalocyanine Dyes. J. Am. Chem. Soc., 130 (10) 2906-2907.
12 Paez-Mozo, E., Gabriunas, N., Maggi, R., Acosta, D., Ruiz, P., & Delmon, B. (1994). Selective olefin oxidation with cobalt phthalocyanine encapsulated in Y-zeolite. J. Mol. Catalysis, 91 (2) 251-258.
13 Zanotti, G., Angelini, N., Notarantonio, S., Paoletti, A.M., Pennesi, G., Rossi, G., Lembo, A., Colonna, D., Di Carlo, A., Reale A., Brown, T.M., & Calogero, G. (2010) Bridged phthalocyanine systems for sensitization of nanocrystalline TiO2 films. Int. J. Photoenergy, Accepted Manuscript (DOI: 10.1155/2010/136807)