How to cite this paper
Bansal, R., Soni, P., Sharma, J., Bhardwaj, S & Halve, A. (2017). One-pot multi-component green synthesis of highly substituted piperidines.Current Chemistry Letters, 6(3), 135-142.
Refrences
1. Lichtenthaler F. W. (2002) Unsaturated O- and N- heterocycles from carbohydrate feedstocks. Acc. Chem. Res., 35 (9) 728-737.
2. Litvinov V. P. (2003) Multi-component cascade heterocyclisation as a promising route to targeted synthesis of polyfunctional pyridines. Russ. Chem. Rev., 72 (1) 69-85.
3. Padwa A., and Waterson A. G. (2000) Synthesis of nitrogen heterocycles using the intramolecular pummerer reaction. Curr. Org. Chem., 4 (2) 175-203.
4. Orru R. V. A. and de Greef M. (2003) Recent advances in solution-phase multi-component methodology for the synthesis of heterocyclic compounds. Synthesis., 2003 (10) 1471-1499.
5. Kirsch G., Hesse S., and Comel A. (2004) Synthesis of five and six membered heterocycles through palladium-catalyzed reaction. Curr. Org. Synth., 1 (1) 47-63.
6. (a) Frederic L. M., Constantieux T., and Rodriguez J. (2005) Multi-component domino reaction from β-ketoamides: highly efficient access to original polyfunctionalized 2,6-diazabi cyclo[2.2.2]octane cores. J. Am. Chem. Soc., 127 (49) 17176-17177.
(b) Simon C., Peyronel J. F., and Rodriguez J. (2001) A new multi-component domino reaction of 1,3-dicarbonyl compounds: one-pot access to polycyclic N/O-, N/S-, and N/N-aminals. J. Org. Lett., 3 (14) 2145-2148.
7. (a) Majumdar K. C., Ponra S., and Ghosh T. (2012) Green approach to highly functionalized thiopyrano derivatives via domino multi-component reaction in water. RSC Adv., 2 (3) 1144-1152.
(b) Kumaravel K., and Vasuki G. (2009) Four-component catalyst-free reaction in water: Combinatorial library synthesis of novel 2-amino-4-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives. Green Chem., 11 (12) 1945-1947.
(c) Girling P. R., Batsanov A. S., Shen H. C., and Whiting A. (2012) A multi-component formal [1+2+1+2] cycloaddition for the synthesis of dihydropyridines. Chem. Commun., 48 (40) 4893-4895.
(d) Hardy S., and Martin S. F. (2011) Multi-component assembly and diversification of novel heterocyclic scaffolds derived from 2-arylpiperidines. Org. Lett., 13 (12) 3102-3105.
8. (a) Tawara J. N., Lorenz P., and Stermitz F. R. (1999) 4-Hydroxylated piperidines and n-methyleuphococcinine (1-methyl-3-granatanone) from picea (spruce) species. identification and synthesis. J. Nat. Prod., 62 (2) 321-323.
(b) Lebold T. B., Leduc A. B., and Kerr M. A. (2009) Zn(II)-catalyzed synthesis of piperidines from propargyl amines and cyclopropane. Org. Lett., 11 (16) 3770-3772.
(c) Watson P. S., Jiang B., and Scott B. (2000) A diastereoselective synthesis of 2,4-disubstituted piperidines: scaffolds for drug discovery. Org. Lett., 2 (23) 3679-3681.
9. Saxena M., Gaur S., Prathipati P., and Saxena A. K. (2006) Synthesis of some substituted pyrazinopyridoindoles and 3D QSAR studies along with related compounds: piperazines, piperidines, pyrazinoisoquinolines, and diphenhydramine, and its semi-rigid analogs as antihistamines (H1). Bioorg. Med. Chem., 14 (24) 8249-8258.
10. Imamura S., Nishikawa Y., Ichikawa T., Hattori T., Matsushita Y., Hashiguchi S., Kanzaki N., Iizawa Y., Baba M., and Sugihara Y. (2005) CCR5 antagonists as anti-HIV-1 agents. Part 3: Synthesis and biological evaluation of piperidine-4-carboxamide derivatives. Bioorg. Med. Chem., 13 (2) 397-416.
11. Srinivas C., Kumar C. N. S. P., Raju B. C., Rao V. J., Naidu V. G. M., Ramakrishn S., and Diwan P. V. (2009) First stereoselective total synthesis and anticancer activity of new amide alkaloids of roots of pepper. Bioorg. Med. Chem. Lett., 19 (20) 5915-5918.
12. Umamatheswari S., Balaji B., Ramanathan M., and Kabilan S. (2010) Synthesis, antimicrobial evaluation and QSAR studies of novel piperidin-4-yl-5-spiro-thiadiazoline derivatives. Bioorg. Med. Chem. Lett., 20 (23) 6909-6914.
13. Misra M., Pandey S. K., Pandey V. P., Pandey J., Tripathi R., and Tripathi R. P. (2009) Organocatalyzed highly atom economic one-pot synthesis of tetrahydropyridines as antimalarials. Bioorg. Med. Chem., 17 (2) 625-633.
14. Khanum S. A., Girish V., Suparshwa S. S., and Khanum N. F. (2009) Benzophenone-N-ethyl piperidine ether analogues. Synthesis and efficacy as anti-inflammatory agent. Bioorg. Med. Chem. Lett., 19 (7) 1887-1891.
15. Bandaraa K. A. N. P., Kumara V., Jacobsson U., and Molleyresc L. P. (2000) Insecticidal piperidine alkaloid from microcospaniculata stem bark. Phytochem., 54 (1) 29-32.
16. Clark P. A., Zaytzev A. V., and Whitwood A. C. (2007) Pot, atom and step economic (PASE) synthesis of highly functionalized piperidines: a five-component condensation. Tetrahedron Lett., 48 (30) 5209-5212.
17. Khan A. T., Parvin T., and Choudhury L. H. (2008) Effects of substituents in the β-position of 1,3-dicarbonyl compounds in bromodimethylsulfonium bromide-catalyzed multi-component reactions: a facile access to functionalized piperidines. J. Org. Chem., 73 (21) 8398-8402.
18. Khan A. T., Lal M., Khan M. M., and Bannuru K. K. R. (2010) Synthesis of highly functionalized piperidines by one-pot multi-component reaction using tetrabutylammoniumtribromide (TBATB). Tetrahedron Lett., 51 (48) 4419-4424.
19. Khan A. T., Khan M. M., and Bannuru K. K. R. (2010) Iodine catalyzed one-pot five-component reactions for direct synthesis of densely functionalized piperidines. Tetrahedron., 66 (39) 7762-7772.
20. Wang H. J., Mo L. P., and Zhang Z. H. (2011) Cerium ammonium nitrate-catalyzed multi-component reaction for efficient synthesis of functionalized tetrahydropyridines. ACS. Comb. Sci., 13 (2) 181-185.
21. Mishra S., and Ghosh R. (2011) Efficient one-pot synthesis of functionalized piperidine scaffolds via ZrOCl2·8H2O catalyzed tandem reactions of aromatic aldehydes with amines and acetoacetic esters. Tetrahedron Lett., 52 (22) 2857-2861.
22. Madanifar Z., Maghsoodlou M., Kangani M., and Hazeri N. (2015) Citric acid, a green catalyst for the one-pot, multi-component synthesis of highly substituted piperidines. Res. Chem. Intermed., 41 (12) 9863-9869.
23. Palermo V., Sathicq A., Liberto N., Fernandes S., Langer P., Jios J., and Romanelli G. (2016) Calix[n]arenes: active organocatalysts for the synthesis of densely functionalized piperidines by one-pot multi-component procedure. Tetrahedron Lett., 57 (19) 2049-2054.
24. Prajapati S. K., Nagarsenkar A., Guggilapu S. D., and Babu B. N. (2015) B(C6F5)3 as versatile catalyst: an efficient and mild protocol for the one-pot synthesis of functionalized piperidines and 2-substituted benzimidazole derivatives. Tetrahedron Lett., 56 (48) 6795-6799.
25. Patil D., Chandam D., Mulik A., Patil P., Jagdale S., and Deshmukh M. (2015) Multi-component synthesis of highly functionalized piperidines using sulfamic acid as a heterogeneous and cost effective catalyst. Indian J. Chem., l54 (B) (04) 545-550.
26. Khan M. M., Khan S., Iqbal S., Saigal., and Yousuf R. (2016) Synthesis of functionalized dihydro-2-oxypyrroles and tetrahydropyridines using 2,6-pyridinedicarboxylic acid as an efficient and mild organo-catalyst. New J. Chem., 40 (9) 7504-7512.
2. Litvinov V. P. (2003) Multi-component cascade heterocyclisation as a promising route to targeted synthesis of polyfunctional pyridines. Russ. Chem. Rev., 72 (1) 69-85.
3. Padwa A., and Waterson A. G. (2000) Synthesis of nitrogen heterocycles using the intramolecular pummerer reaction. Curr. Org. Chem., 4 (2) 175-203.
4. Orru R. V. A. and de Greef M. (2003) Recent advances in solution-phase multi-component methodology for the synthesis of heterocyclic compounds. Synthesis., 2003 (10) 1471-1499.
5. Kirsch G., Hesse S., and Comel A. (2004) Synthesis of five and six membered heterocycles through palladium-catalyzed reaction. Curr. Org. Synth., 1 (1) 47-63.
6. (a) Frederic L. M., Constantieux T., and Rodriguez J. (2005) Multi-component domino reaction from β-ketoamides: highly efficient access to original polyfunctionalized 2,6-diazabi cyclo[2.2.2]octane cores. J. Am. Chem. Soc., 127 (49) 17176-17177.
(b) Simon C., Peyronel J. F., and Rodriguez J. (2001) A new multi-component domino reaction of 1,3-dicarbonyl compounds: one-pot access to polycyclic N/O-, N/S-, and N/N-aminals. J. Org. Lett., 3 (14) 2145-2148.
7. (a) Majumdar K. C., Ponra S., and Ghosh T. (2012) Green approach to highly functionalized thiopyrano derivatives via domino multi-component reaction in water. RSC Adv., 2 (3) 1144-1152.
(b) Kumaravel K., and Vasuki G. (2009) Four-component catalyst-free reaction in water: Combinatorial library synthesis of novel 2-amino-4-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives. Green Chem., 11 (12) 1945-1947.
(c) Girling P. R., Batsanov A. S., Shen H. C., and Whiting A. (2012) A multi-component formal [1+2+1+2] cycloaddition for the synthesis of dihydropyridines. Chem. Commun., 48 (40) 4893-4895.
(d) Hardy S., and Martin S. F. (2011) Multi-component assembly and diversification of novel heterocyclic scaffolds derived from 2-arylpiperidines. Org. Lett., 13 (12) 3102-3105.
8. (a) Tawara J. N., Lorenz P., and Stermitz F. R. (1999) 4-Hydroxylated piperidines and n-methyleuphococcinine (1-methyl-3-granatanone) from picea (spruce) species. identification and synthesis. J. Nat. Prod., 62 (2) 321-323.
(b) Lebold T. B., Leduc A. B., and Kerr M. A. (2009) Zn(II)-catalyzed synthesis of piperidines from propargyl amines and cyclopropane. Org. Lett., 11 (16) 3770-3772.
(c) Watson P. S., Jiang B., and Scott B. (2000) A diastereoselective synthesis of 2,4-disubstituted piperidines: scaffolds for drug discovery. Org. Lett., 2 (23) 3679-3681.
9. Saxena M., Gaur S., Prathipati P., and Saxena A. K. (2006) Synthesis of some substituted pyrazinopyridoindoles and 3D QSAR studies along with related compounds: piperazines, piperidines, pyrazinoisoquinolines, and diphenhydramine, and its semi-rigid analogs as antihistamines (H1). Bioorg. Med. Chem., 14 (24) 8249-8258.
10. Imamura S., Nishikawa Y., Ichikawa T., Hattori T., Matsushita Y., Hashiguchi S., Kanzaki N., Iizawa Y., Baba M., and Sugihara Y. (2005) CCR5 antagonists as anti-HIV-1 agents. Part 3: Synthesis and biological evaluation of piperidine-4-carboxamide derivatives. Bioorg. Med. Chem., 13 (2) 397-416.
11. Srinivas C., Kumar C. N. S. P., Raju B. C., Rao V. J., Naidu V. G. M., Ramakrishn S., and Diwan P. V. (2009) First stereoselective total synthesis and anticancer activity of new amide alkaloids of roots of pepper. Bioorg. Med. Chem. Lett., 19 (20) 5915-5918.
12. Umamatheswari S., Balaji B., Ramanathan M., and Kabilan S. (2010) Synthesis, antimicrobial evaluation and QSAR studies of novel piperidin-4-yl-5-spiro-thiadiazoline derivatives. Bioorg. Med. Chem. Lett., 20 (23) 6909-6914.
13. Misra M., Pandey S. K., Pandey V. P., Pandey J., Tripathi R., and Tripathi R. P. (2009) Organocatalyzed highly atom economic one-pot synthesis of tetrahydropyridines as antimalarials. Bioorg. Med. Chem., 17 (2) 625-633.
14. Khanum S. A., Girish V., Suparshwa S. S., and Khanum N. F. (2009) Benzophenone-N-ethyl piperidine ether analogues. Synthesis and efficacy as anti-inflammatory agent. Bioorg. Med. Chem. Lett., 19 (7) 1887-1891.
15. Bandaraa K. A. N. P., Kumara V., Jacobsson U., and Molleyresc L. P. (2000) Insecticidal piperidine alkaloid from microcospaniculata stem bark. Phytochem., 54 (1) 29-32.
16. Clark P. A., Zaytzev A. V., and Whitwood A. C. (2007) Pot, atom and step economic (PASE) synthesis of highly functionalized piperidines: a five-component condensation. Tetrahedron Lett., 48 (30) 5209-5212.
17. Khan A. T., Parvin T., and Choudhury L. H. (2008) Effects of substituents in the β-position of 1,3-dicarbonyl compounds in bromodimethylsulfonium bromide-catalyzed multi-component reactions: a facile access to functionalized piperidines. J. Org. Chem., 73 (21) 8398-8402.
18. Khan A. T., Lal M., Khan M. M., and Bannuru K. K. R. (2010) Synthesis of highly functionalized piperidines by one-pot multi-component reaction using tetrabutylammoniumtribromide (TBATB). Tetrahedron Lett., 51 (48) 4419-4424.
19. Khan A. T., Khan M. M., and Bannuru K. K. R. (2010) Iodine catalyzed one-pot five-component reactions for direct synthesis of densely functionalized piperidines. Tetrahedron., 66 (39) 7762-7772.
20. Wang H. J., Mo L. P., and Zhang Z. H. (2011) Cerium ammonium nitrate-catalyzed multi-component reaction for efficient synthesis of functionalized tetrahydropyridines. ACS. Comb. Sci., 13 (2) 181-185.
21. Mishra S., and Ghosh R. (2011) Efficient one-pot synthesis of functionalized piperidine scaffolds via ZrOCl2·8H2O catalyzed tandem reactions of aromatic aldehydes with amines and acetoacetic esters. Tetrahedron Lett., 52 (22) 2857-2861.
22. Madanifar Z., Maghsoodlou M., Kangani M., and Hazeri N. (2015) Citric acid, a green catalyst for the one-pot, multi-component synthesis of highly substituted piperidines. Res. Chem. Intermed., 41 (12) 9863-9869.
23. Palermo V., Sathicq A., Liberto N., Fernandes S., Langer P., Jios J., and Romanelli G. (2016) Calix[n]arenes: active organocatalysts for the synthesis of densely functionalized piperidines by one-pot multi-component procedure. Tetrahedron Lett., 57 (19) 2049-2054.
24. Prajapati S. K., Nagarsenkar A., Guggilapu S. D., and Babu B. N. (2015) B(C6F5)3 as versatile catalyst: an efficient and mild protocol for the one-pot synthesis of functionalized piperidines and 2-substituted benzimidazole derivatives. Tetrahedron Lett., 56 (48) 6795-6799.
25. Patil D., Chandam D., Mulik A., Patil P., Jagdale S., and Deshmukh M. (2015) Multi-component synthesis of highly functionalized piperidines using sulfamic acid as a heterogeneous and cost effective catalyst. Indian J. Chem., l54 (B) (04) 545-550.
26. Khan M. M., Khan S., Iqbal S., Saigal., and Yousuf R. (2016) Synthesis of functionalized dihydro-2-oxypyrroles and tetrahydropyridines using 2,6-pyridinedicarboxylic acid as an efficient and mild organo-catalyst. New J. Chem., 40 (9) 7504-7512.