How to cite this paper
Moradi, L., Bina, M & Partovi, T. (2014). New strategy for chemically attachment of Schiff base complexes on Multiwalled Carbon Nanotubes surfaces.Current Chemistry Letters, 3(3), 147-156.
Refrences
1 Iijima S. (1991) Helical microtubules of graphitic carbon. Nature., 354, 56–58.
2 Lee S.M., Lee Y.H. (2000) Hydrogen storage in single-walled carbon nanotubes. Appl. Phys. Lett., 76, 2877–2879.
3 Rahimi N., Sabbaghi S., Sheikhi M. H. (2012) Hydrogen storage in carbon nanotubes with Ni nanoparticles by electrochemical., Int. J. Nano., 2, 165-169.
4 Bhowmick R., Rajasekaran S., Friebel D., Beasley C., Jiao L.Y., Ogasawara H., Dai H.J., Clemens B., Nilsson A. (2011) Hydrogen Spillover in Pt-Single-Walled Carbon Nanotube Composites: Formation of Stable C-H Bonds. J. Am. Chem. Soc., 133 5580-5586.
5 Grivani G., Tangestaninejad S., Halili A. (2007) A readily prepared, highly reusable and active polymer-supported molybdenum carbonyl Schiff base complex as epoxidation catalyst. Inorg. Chem. Commun., 10, 914–917.
6 Salavati-Niasari M., Esmaeili E., Seyghalkar H., Bazarganipour M. (2011) Cobalt (II) Schiff base complex on multi-wall carbon nanotubes (MWNTs) by covalently grafted method: Synthesis, characterization and liquid phase epoxidation of cyclohexene by air. Inorg. Chim. Acta., 375, 11–19.
7 Collins P.G., Bradley K., Ishigami M., Zettl A. (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science., 287, 1801–1804.
8 Chen G., Paronyan T. M., Pigos E. M., Harutyunyan A. R., (2012) Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination. Sci. Rep., 2, 343-347.
9 Cress C. D., McMorrow J. J., Robinson J. T., Landi B. J., Hubbard S. M., Messenger S. R., (2012) Radiation Effects in Carbon Nanoelectronics. Electronics., 1, 23-31.
10 Tasis D., Tagmatarchis N., Bianco A., and Prato M. (2006) Chemistry of carbon nanotube. Chem. ReV., 106, 1105-1138.
11 Pan B., Cui D., He R., Gao F., Zhang Y. (2006) Covalent attachment of quantum dot on carbon nanotubes. Chem. Phys. Lett., 417, 419-424.
12 Wang Y., Iqbal Z., Malhotra S. (2005) Functionalization of carbon nanotubes with amines and enzymes. Chem. Phys. Lett., 402, 96-101.
13 Su X., Shuai Y., Guo Z., Feng Y. (2013) Functionalization of Multi-Walled Carbon Nanotubes with Thermo-Responsive Azide Terminated Poly(N-isopropylacrylamide) via Click Reactions Molecules., 18, 4599-4612.
14 Georgakilas V., Gournis D., Tzitzios V., Pasquato L., Guldi D.M., Prato M. (2007) decorating carbon nanotubes with metal semiconductor nanoparticles. J. Mater. Chem., 17, 2679-2694.
15 Haremza J. M., Hahn M. A., Krauss T. D., Chen S., Calcines J. (2002) Attachment of Single CdSe Nanocrystals to Individual Single-Walled Carbon Nanotubes. Nano Lett., 2, 1253-1258.
16 Kumar S., Kaur I., Dharamvir K., Bharadwaj L. M. (2012) Controlling the density and site of attachment of gold nanoparticles onto the surface of carbon nanotubes, J. Colloid. Interface. Sci., 369, 23-27.
17 Baker S.E., Cai W., Lasseter T.L., Weidkamp K.P., Hamers R.J. (2002) covalently bonded adducts of deoxyribonucleic acid (DNA) oligonuclotides with single wal carbon nanotubes:synthesis and hybridization. Nano Lett., 2, 1413-1417.
18 Awasthi K., Singh D. P., Singh S., Dash D., Srivastava N. O. (2009) Attachment of biomolecules (protein and DNA) t0 amino-functionalized carbon nanotubes., New Carbon Mater., 24, 301-306.
19 Baker SE., Tse KY., Hindin E., Nichols BM., Clare TL., Hamers RJ. (2005) Covalent functionalization for biomolecular recognition on vertically aligned carbon nanofibers. Chem. Mater., 17, 4971-4978.
20 Wipawakarn P., Ju H., Wong D. K. Y. (2012) label-free electrochemical DNA biosensor based on a Zr(IV)-coordinated DNA duplex immobilised on a carbon nanofibre/chitosan layer. Anal. Bioanal Chem. A., 402, 2817-2826.
21 Salavati-Niasari M., Bazarganipour M. (2008) Covalent functionalization of multi-wall carbon nanotubes (MWNTs) by nickel(II) Schiff-base complex: Synthesis, characterization and liquid phase oxidation of phenol with hydrogen peroxide. Appl. Surf. Sci., 255, 2963–2970.
22 Bhunia S., Koner S. (2011) Tethering of nickel(II) Schiff-base complex onto mesoporous silica: An efficient heterogeneous catalyst for epoxidation of olefins. Polyhedron, 30, 1857–1864.
23 Rayati S., Zakavi S., Koliaei M., Wojtczak A., Kozakiewicz A. (2010) Electron-rich salen-type Schiff base complexes of Cu(II) as catalysts for oxidation of cyclooctene and styrene with tert-butylhydroperoxide: A comparison with electron-deficient ones. Inorg. Chem. Commun., 13, 203–207
24 Rayati S., Koliaei M., Ashouri F., Mohebbi S., Wojtczak A., Kozakiewicz A. (2008) Oxovanadium(IV) Schiff base complexes derived from 2,20-dimethylpropandiamine: A homogeneous catalyst for cyclooctene and styrene oxidation. Appl. Catal. A: General., 346, 65–71.
25 Naeimi H., Karshenas A. (2013) Highly regioselective conversion of epoxides to B-hydroxy nitriles using metal(II) Schiff base complexes as new catalysts under mild conditions. Polyhedron 49, 234–238.
26 Ding L., Jin W., Chu Z., Chen L., Lü X., Yuan G., Song J., Fan D., Bao F. (2011) Bulk solvent-free melt ring-opening polymerization (ROP) of L-lactide catalyzed by Ni(II) and Ni(II)–Ln(III) complexes based on the acyclic Salen-type Schiff-base ligand. Inorg. Chem. Commun., 14, 1274–1278.
27 Ayala V., Corma A., Iglesias M., Rincon J.A., Sanchez F. (2004) Hybrid organic-inorganic catalysts: a cooperative effect between support, and palladium and nickel salen complexes on catalytic hydrogenation of imines. J. Catal., 224, 170-177.
28 Holbach M., Weck M. (2006) Modular Approach for the Development of Supported, Mono Functionalized Salen Catalysts. J. Org. Chem., 71, 1825-1836.
29 Bhunia S., Koner S. (2011) Tethering of nickel(II) Schiff-base complex onto mesoporous silica: An efficient heterogeneous catalyst for epoxidation of olefins. Polyhedron 30, 1857–1864
30 Yang Y., Zhang Y., Hao S., Guan J., Ding H., Shang F., Qiu P., Kan Q. (2010) Heterogenization of functionalized Cu(II) and VO(IV) Schiff base complexes by direct immobilization onto amino-modified SBA-15: Styrene oxidation catalysts with enhanced reactivity. Appl. Catal. A: General., 381, 274–281.
2 Lee S.M., Lee Y.H. (2000) Hydrogen storage in single-walled carbon nanotubes. Appl. Phys. Lett., 76, 2877–2879.
3 Rahimi N., Sabbaghi S., Sheikhi M. H. (2012) Hydrogen storage in carbon nanotubes with Ni nanoparticles by electrochemical., Int. J. Nano., 2, 165-169.
4 Bhowmick R., Rajasekaran S., Friebel D., Beasley C., Jiao L.Y., Ogasawara H., Dai H.J., Clemens B., Nilsson A. (2011) Hydrogen Spillover in Pt-Single-Walled Carbon Nanotube Composites: Formation of Stable C-H Bonds. J. Am. Chem. Soc., 133 5580-5586.
5 Grivani G., Tangestaninejad S., Halili A. (2007) A readily prepared, highly reusable and active polymer-supported molybdenum carbonyl Schiff base complex as epoxidation catalyst. Inorg. Chem. Commun., 10, 914–917.
6 Salavati-Niasari M., Esmaeili E., Seyghalkar H., Bazarganipour M. (2011) Cobalt (II) Schiff base complex on multi-wall carbon nanotubes (MWNTs) by covalently grafted method: Synthesis, characterization and liquid phase epoxidation of cyclohexene by air. Inorg. Chim. Acta., 375, 11–19.
7 Collins P.G., Bradley K., Ishigami M., Zettl A. (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science., 287, 1801–1804.
8 Chen G., Paronyan T. M., Pigos E. M., Harutyunyan A. R., (2012) Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination. Sci. Rep., 2, 343-347.
9 Cress C. D., McMorrow J. J., Robinson J. T., Landi B. J., Hubbard S. M., Messenger S. R., (2012) Radiation Effects in Carbon Nanoelectronics. Electronics., 1, 23-31.
10 Tasis D., Tagmatarchis N., Bianco A., and Prato M. (2006) Chemistry of carbon nanotube. Chem. ReV., 106, 1105-1138.
11 Pan B., Cui D., He R., Gao F., Zhang Y. (2006) Covalent attachment of quantum dot on carbon nanotubes. Chem. Phys. Lett., 417, 419-424.
12 Wang Y., Iqbal Z., Malhotra S. (2005) Functionalization of carbon nanotubes with amines and enzymes. Chem. Phys. Lett., 402, 96-101.
13 Su X., Shuai Y., Guo Z., Feng Y. (2013) Functionalization of Multi-Walled Carbon Nanotubes with Thermo-Responsive Azide Terminated Poly(N-isopropylacrylamide) via Click Reactions Molecules., 18, 4599-4612.
14 Georgakilas V., Gournis D., Tzitzios V., Pasquato L., Guldi D.M., Prato M. (2007) decorating carbon nanotubes with metal semiconductor nanoparticles. J. Mater. Chem., 17, 2679-2694.
15 Haremza J. M., Hahn M. A., Krauss T. D., Chen S., Calcines J. (2002) Attachment of Single CdSe Nanocrystals to Individual Single-Walled Carbon Nanotubes. Nano Lett., 2, 1253-1258.
16 Kumar S., Kaur I., Dharamvir K., Bharadwaj L. M. (2012) Controlling the density and site of attachment of gold nanoparticles onto the surface of carbon nanotubes, J. Colloid. Interface. Sci., 369, 23-27.
17 Baker S.E., Cai W., Lasseter T.L., Weidkamp K.P., Hamers R.J. (2002) covalently bonded adducts of deoxyribonucleic acid (DNA) oligonuclotides with single wal carbon nanotubes:synthesis and hybridization. Nano Lett., 2, 1413-1417.
18 Awasthi K., Singh D. P., Singh S., Dash D., Srivastava N. O. (2009) Attachment of biomolecules (protein and DNA) t0 amino-functionalized carbon nanotubes., New Carbon Mater., 24, 301-306.
19 Baker SE., Tse KY., Hindin E., Nichols BM., Clare TL., Hamers RJ. (2005) Covalent functionalization for biomolecular recognition on vertically aligned carbon nanofibers. Chem. Mater., 17, 4971-4978.
20 Wipawakarn P., Ju H., Wong D. K. Y. (2012) label-free electrochemical DNA biosensor based on a Zr(IV)-coordinated DNA duplex immobilised on a carbon nanofibre/chitosan layer. Anal. Bioanal Chem. A., 402, 2817-2826.
21 Salavati-Niasari M., Bazarganipour M. (2008) Covalent functionalization of multi-wall carbon nanotubes (MWNTs) by nickel(II) Schiff-base complex: Synthesis, characterization and liquid phase oxidation of phenol with hydrogen peroxide. Appl. Surf. Sci., 255, 2963–2970.
22 Bhunia S., Koner S. (2011) Tethering of nickel(II) Schiff-base complex onto mesoporous silica: An efficient heterogeneous catalyst for epoxidation of olefins. Polyhedron, 30, 1857–1864.
23 Rayati S., Zakavi S., Koliaei M., Wojtczak A., Kozakiewicz A. (2010) Electron-rich salen-type Schiff base complexes of Cu(II) as catalysts for oxidation of cyclooctene and styrene with tert-butylhydroperoxide: A comparison with electron-deficient ones. Inorg. Chem. Commun., 13, 203–207
24 Rayati S., Koliaei M., Ashouri F., Mohebbi S., Wojtczak A., Kozakiewicz A. (2008) Oxovanadium(IV) Schiff base complexes derived from 2,20-dimethylpropandiamine: A homogeneous catalyst for cyclooctene and styrene oxidation. Appl. Catal. A: General., 346, 65–71.
25 Naeimi H., Karshenas A. (2013) Highly regioselective conversion of epoxides to B-hydroxy nitriles using metal(II) Schiff base complexes as new catalysts under mild conditions. Polyhedron 49, 234–238.
26 Ding L., Jin W., Chu Z., Chen L., Lü X., Yuan G., Song J., Fan D., Bao F. (2011) Bulk solvent-free melt ring-opening polymerization (ROP) of L-lactide catalyzed by Ni(II) and Ni(II)–Ln(III) complexes based on the acyclic Salen-type Schiff-base ligand. Inorg. Chem. Commun., 14, 1274–1278.
27 Ayala V., Corma A., Iglesias M., Rincon J.A., Sanchez F. (2004) Hybrid organic-inorganic catalysts: a cooperative effect between support, and palladium and nickel salen complexes on catalytic hydrogenation of imines. J. Catal., 224, 170-177.
28 Holbach M., Weck M. (2006) Modular Approach for the Development of Supported, Mono Functionalized Salen Catalysts. J. Org. Chem., 71, 1825-1836.
29 Bhunia S., Koner S. (2011) Tethering of nickel(II) Schiff-base complex onto mesoporous silica: An efficient heterogeneous catalyst for epoxidation of olefins. Polyhedron 30, 1857–1864
30 Yang Y., Zhang Y., Hao S., Guan J., Ding H., Shang F., Qiu P., Kan Q. (2010) Heterogenization of functionalized Cu(II) and VO(IV) Schiff base complexes by direct immobilization onto amino-modified SBA-15: Styrene oxidation catalysts with enhanced reactivity. Appl. Catal. A: General., 381, 274–281.