Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Uncertain Supply Chain Management » Enhancing business intelligence for supply chain operations through effective classification of supplier management

Journals

  • IJIEC (678)
  • MSL (2637)
  • DSL (606)
  • CCL (460)
  • USCM (1087)
  • ESM (391)
  • AC (543)
  • JPM (215)
  • IJDS (802)
  • JFS (81)

USCM Volumes

    • Volume 1 (22)
      • Issue 1 (4)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 2 (32)
      • Issue 1 (7)
      • Issue 2 (5)
      • Issue 3 (10)
      • Issue 4 (10)
    • Volume 3 (39)
      • Issue 1 (9)
      • Issue 2 (13)
      • Issue 3 (10)
      • Issue 4 (7)
    • Volume 4 (31)
      • Issue 1 (10)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (9)
    • Volume 5 (26)
      • Issue 1 (6)
      • Issue 2 (6)
      • Issue 3 (8)
      • Issue 4 (6)
    • Volume 6 (25)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 7 (57)
      • Issue 1 (8)
      • Issue 2 (19)
      • Issue 3 (14)
      • Issue 4 (16)
    • Volume 8 (82)
      • Issue 1 (20)
      • Issue 2 (15)
      • Issue 3 (17)
      • Issue 4 (30)
    • Volume 9 (117)
      • Issue 1 (25)
      • Issue 2 (26)
      • Issue 3 (32)
      • Issue 4 (34)
    • Volume 10 (150)
      • Issue 1 (28)
      • Issue 2 (32)
      • Issue 3 (44)
      • Issue 4 (46)
    • Volume 11 (190)
      • Issue 1 (42)
      • Issue 2 (45)
      • Issue 3 (50)
      • Issue 4 (53)
    • Volume 12 (244)
      • Issue 1 (55)
      • Issue 2 (59)
      • Issue 3 (63)
      • Issue 4 (67)
    • Volume 13 (62)
      • Issue 1 (15)
      • Issue 2 (15)
      • Issue 3 (15)
      • Issue 4 (17)
    • Volume 14 (10)
      • Issue 1 (5)
      • Issue 2 (5)

Keywords

Supply chain management(156)
Jordan(154)
Vietnam(147)
Customer satisfaction(119)
Performance(108)
Supply chain(105)
Service quality(95)
Tehran Stock Exchange(94)
Competitive advantage(91)
SMEs(85)
optimization(81)
Financial performance(81)
Job satisfaction(78)
Factor analysis(78)
Trust(77)
Knowledge Management(76)
Genetic Algorithm(74)
TOPSIS(73)
Social media(72)
Organizational performance(71)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(52)
Endri Endri(44)
Muhammad Alshurideh(40)
Hotlan Siagian(36)
Muhammad Turki Alshurideh(35)
Jumadil Saputra(35)
Barween Al Kurdi(32)
Hassan Ghodrati(31)
Ahmad Makui(30)
Dmaithan Almajali(30)
Mohammad Khodaei Valahzaghard(30)
Shankar Chakraborty(29)
Basrowi Basrowi(29)
Ni Nyoman Kerti Yasa(29)
Prasadja Ricardianto(28)
Sulieman Ibraheem Shelash Al-Hawary(27)
Ali Harounabadi(26)
Haitham M. Alzoubi(26)


» Show all authors

Countries

Iran(2149)
Indonesia(1208)
India(762)
Jordan(726)
Vietnam(489)
Malaysia(415)
Saudi Arabia(400)
United Arab Emirates(209)
Thailand(142)
China(130)
United States(100)
Turkey(97)
Ukraine(93)
Egypt(86)
Canada(83)
Pakistan(81)
Nigeria(72)
Peru(70)
United Kingdom(69)
Taiwan(65)


» Show all countries

Uncertain Supply Chain Management

ISSN 2291-6830 (Online) - ISSN 2291-6822 (Print)
Quarterly Publication
Volume 2 Issue 4 pp. 229-236 , 2014

Enhancing business intelligence for supply chain operations through effective classification of supplier management Pages 229-236 Right click to download the paper Download PDF

Authors: Yee Ming Chen, Yu-Pu Chiu

Keywords: Classification, Clustering, Type-2 Fuzzy

Abstract: Global supply chains have to manage production over the whole world. Therefore, production plants are needed to supply the demand of products and parts. Due to complication and uncertainty of production market, portfolio selection is one of the most challenging problems. Type-2(T2) fuzzy is a model, which provides the ability to handle the effect of uncertainty. Aiming at this problem, we propose a T2 supplier management system operation scheme, which not only employs fuzzy C-Means clustering algorithm by dynamically increasing cluster center, but also it achieves good classification performance. The key result is that fuzzy classification applications improve the planning and operating of supply and demand in a distributed production and global supply chain.

How to cite this paper
Chen, Y & Chiu, Y. (2014). Enhancing business intelligence for supply chain operations through effective classification of supplier management.Uncertain Supply Chain Management, 2(4), 229-236.

Refrences
Aliev, R. A., Fazlollahi, B., Guirimov, B. G., & Aliev, R. R. (2007). Fuzzy-genetic approach to aggregate production–distribution planning in supply chain management. Information Sciences, 177(20), 4241-4255.

Choi, B. I., & Chung-Hoon Rhee, F. (2009). Interval type-2 fuzzy membership function generation methods for pattern recognition. Information Sciences,179(13), 2102-2122.

Fan, M., Stallaert, J., & Whinston, A. B. (2003). Decentralized mechanism design for supply chain organizations using an auction market. Information Systems Research, 14(1), 1-22.

Hashemzadeh, G., Modiri, M., & Rahimi, Z. (2014). Identification and ranking effective factors on establishment of green supply chain management in railway industry. Uncertain Supply Chain Management. 2(4).

Hayes, J., & Finnegan, P. (2005). Assessing the of potential of e-business models: towards a framework for assisting decision-makers. European Journal of Operational Research, 160(2), 365-379.

Hwang, C., & Rhee, F. H. (2007). Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means. Fuzzy Systems, IEEE Transactions on, 15(1), 107-120.

Karnik, N. N., & Mendel, J. M. (1999). Applications of type-2 fuzzy logic systems to forecasting of time-series. Information Sciences, 120(1), 89-111.

Karnik, N. N., & Mendel, J. M. (2001). Centroid of a type-2 fuzzy set.Information Sciences, 132(1), 195-220.

Radjou, N. (2002). Building an adaptive supply network. Supply-Chain World North America, April 22-24, New Orleans, LA.

Chung-Hoon Rhee, F. (2007). Uncertain fuzzy clustering: insights and recommendations. Computational Intelligence Magazine, IEEE, 2(1), 44-56.

Wu, D., & Mendel, J. M. (2009). Enhanced karnik--mendel algorithms. Fuzzy Systems, IEEE Transactions on, 17(4), 923-934.

Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information sciences, 8(3), 199-249.
  • 17
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Uncertain Supply Chain Management | Year: 2014 | Volume: 2 | Issue: 4 | Views: 1963 | Reviews: 0

Related Articles:
  • A fuzzy solution approach for a multi-objective integrated production-distr ...
  • A new weighted fuzzy grammar on object oriented database queries
  • A multi-objective particle swarm optimization for production-distribution p ...
  • Solving an aggregate production planning problem by using multi-objective g ...
  • A fuzzy mixed integer linear programming model for integrating procurement- ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com