How to cite this paper
Danyliuk, I., Kemskyi, S., Saliyeva, L., Slyvka, N., Melnyk, D., Melnyk, O., Dorokhov, V & Vovk, M. (2025). Antioxidant activity, DFT-calculation, and docking of 5-amino-N-(3-di(per)fluoroalkyl-2-iodo-n-propyl)-1,2,3-triazole-4-carboxamides.Current Chemistry Letters, 14(2), 251-264.
Refrences
1. Vala D.P., Vala R.M., and Petel H.M. (2022) Versatile Synthetic Platform for 1,2,3-Triazole Chemistry. ACS Omega, 7 (42) 36945-36987 (https://doi.org/10.1021/acsomega.2c04883).
2. Motornov V., and Beier P. (2023) NH-1,2,3-Triazoles as Versatile Building Blocks in Denitrogenative Transformations. RSC Adv., 13 (49) 34646-34653 (https://doi.org/10.1039/D3RA06045D).
3. Shiri P., Amani A.M., and Mayer-Gall T. (2021) A Recent Overview on the Synthesis of 1,4,5-Trisubstituted 1,2,3-triazoles. Beilstein J. Org. Chem., 17 1600-1628 (https://doi.org/10.3762/bjoc.17.114).
4. Reddy G.S., Anebouselvy K., and Ramachary D.B. (2020) [3+2]-Cycloaddition for Fully Decorated Vinyl-1,2,3-Triazoles: Design, Synthesis and Applications. Chem. Asian. J., 15 (19) 2960-2983 (https://doi.org/10.1002/asia.202000731).
5. Agouram N., El Hadrami E.M., and Bentama A. (2021) 1,2,3-Triazoles as Biomimetics in Peptide Science. Molecules, 26 (10) 2937 (https://doi.org/10.3390/molecules26102937).
6. Li W., and Zhang J. (2020). Synthesis of Heterocycles through Denitrogenative Cyclization of Triazoles and Benzotriazoles. Chemistry, 26 (52) 11931–11945 (https://doi.org/10.1002/chem.202000674).
7. Slavova K.I., Todorov L.T., Belskaya N.P., Palafox M.A., and Kostova I.P. (2020) Developments in the Application of 1,2,3-Triazoles in Cancer Treatment. Recent Pat Anticancer Drug Discov., 15 (2) 92-112 (https://doi.org/10.2174/1574892815666200717164457).
8. Forezi L.S.M., Lima C.G.S., Amaral A.A.P., Ferreira P.G., Souza M.C.B.V., Cunha A.C., da Silva F.C., and Ferreira V.F. (2021) Bioactive 1,2,3‐Triazoles: An Account on their Synthesis, Structural Diversity and Biological Applications. The Chemical Record, 21 (10) 2782-2807 (https://doi.org/10.1002/tcr.202000185).
9. Poonia N., Kumar A., Kumar V., Yadav M., and Lal, K. (2021) Recent Progress in 1H-1,2,3-triazoles as Potential Antifungal Agents. Curr. Top. Med. Chem., 21 (23) 2109-2133 (https://doi.org/10.2174/1568026621666210913122828).
10. Alam M.M. (2022) 1,2,3-Triazole hybrids as anticancer agents: A review. Arch Pharm., 355 (1) e2100158 (https://doi.org/10.1002/ardp.202100158).
11. Ravindar L., Hasbullah S.A., Rakesh K.P., and Hassan, N.I. (2023) Triazole Hybrid Compounds: A new Frontier in Malaria Treatment. Eur. J. Med. Chem., 259 115694 (https://doi.org/10.1016/j.ejmech.2023.115694).
12. Vaishnani M.J., Bijani S., Rahamathulla M., Baldaniya L., Jain V., Thajudeen K.Y., Ahmed M.M., Farhana S.A., and Pasha I. (2024) Biological Importance and Synthesis of 1,2,3-Triazole Derivatives: a review. Green Chem. Lett. and Rev., 17 (1) (https://doi.org/10.1080/17518253.2024.2307989).
13. Marzi M., Farjam M., Kazeminejad Z., Shiroudi A., Kouhpayeh A., Zarenezhad E. (2022) A Recent Overview of 1,2,3-Triazole-Containing Hybrids as Novel Antifungal Agents: Focusing on Synthesis, Mechanism of Action, and Structure-Activity Relationship (SAR). J. Chem., 1 7884316 (https://doi.org/10.1155/2022/7884316).
14. Singh A., Singh K., Sharma A., Joshi K., Singh B., Sharma S., Batra K., Kaur K., Singh D., Chadha R., Mohinder P., Bedi S. (2023) 1,2,3-Triazole Derivatives as an Emerging Scaffold for Antifungal Drug Development against Candida albicans: A Comprehensive Review. Chem. Biodiversity., 20 (5) e202300024 (https://doi.org/10.1002/cbdv.202300024).
15. Hrimla M., Bahsis L., Laamari M.R., Julve M., and Stiriba S.-E. (2022) An Overview on the Performance of 1,2,3-Triazole Derivatives as Corrosion Inhibitors for Metal Surfaces. Int. J. Mol. Sci., 23 (1) 16 (https://doi.org/10.3390/ijms23010016).
16. Farooq T. (2021) Triazoles in Material Sciences. Advances in Triazole Chemistry, 223-244 (https://doi.org/10.1016/B978-0-12-817113-4.00002-0).
17. Marinova P., and Hristov M. (2023) Synthesis and Biological Activity of Novel Complexes with Anthranilic Acid and its Analogues. Appl. Sci., 13 9426 (https://doi.org/10.3390/app13169426).
18. Jaramillo A.V.C., Cory M.B., Li A., Kohli R.M., and Wuest W.M. (2022) Exploration of Inhibitors of the Bacterial LexA Repressor-protease. Bioorg. Med. Chem. Lett., 65 128702 (https://doi.org/10.1016/j.bmcl.2022.128702).
19. Kiselyov A., Semenova M., and Semenov V.V. (2009) (1,2,3-Triazol-4-yl)benzenamines: Synthesis and Activity Against VEGF receptors 1 and 2. Bioorg. Med. Chem. Lett., 19 (5) 1344-1348 (https://doi.org/10.1016/j.bmcl.2009.01.046).
20. Lan J., Cadassou O., Corbet C., Riant O., and Feron O. (2022) Discovery of Mitochondrial Complex I Inhibitors as Anticancer and Radiosensitizer Drugs Based on Compensatory Stimulation of Lactate Release. Cancers., 14 (21) 5454 (https://doi.org/10.3390/cancers14215454).
21. Mu R., Zhou Y., Chen L., Wei H., Yu J., Gou W., Ye C., Hou W., Li Y., and Zhu L. (2021) Discovery of Novel Triazole Compounds as Selective IL-1β Releasement Inhibitors. Bioorg. Med. Chem. Lett., 53 128415 (https://doi.org/10.1016/j.bmcl.2021.128415).
22. Pokhodylo N., Manko N., Finiuk N., Klyuchivska O., Matiychuk V., Obushak M., and Stoiko R. (2021) Primary Discovery of 1-Aryl-5-substituted-1H-1,2,3-triazole-4-carboxamides as Promising Antimicrobial Agents. J. Mol. Struct., 1246 131146 (https://doi.org/10.1016/j.molstruc.2021.131146).
23. Selwood T., Larsen B.J., Mo C.Y., Culyba M.J., Hostetler Z.M., Kohli R.M., Reitz A.B., and Baugh S.D.P. (2018) Advancement of the 5-Amino-1-(Carbamoylmethyl)-1H-1,2,3-Triazole-4-Carboxamide Scaffold to Disarm the Bacterial SOS Response. Front. Microbiol. 9 2961 (https://doi.org/10.3389/fmicb.2018.02961).
24. Yuan W., Chen X., Liu N., Wen Y., Yang B., Andrei G., Snoeck R., Xiang Y., Wu Y., Jiang Z., Schols D., Zhang Z., and Wu Q. (2019) Synthesis, Anti-Varicella-Zoster Virus and Anti-Cytomegalovirus Activity of 4,5-Disubstituted 1,2,3-(1H)-Triazoles. Medicinal Chemistry., 15 (7) 801-812 (https://doi.org/10.2174/1573406414666181109095239).
25. Brand S., Ko E.J., Viayna E., Thompson S., Spinks D., Thomas M., Sandberg L., Francisco A.F., Jayawardhana S., Smith V.C., Jansen C., De Rycker M., Thomas J., MacLean L., Osuna-Cabello M., Riley J., Scullion P., Stojanovski L., Simeons F.R.C., Epemolu O., Shishikura Y., Crouch S.D., Bakshi T.S., Nixon C.J., Reid I.H., Hill A.P., Underwood T.Z., Hindley S.J., Robinson S.A., Kelly J.M., Fiandor J.M., Wyatt P.G., Marco M., Miles T.J., Read K.D., and Gilbert I.H. (2017) Discovery and Optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against Trypanosoma cruzi. J Med Chem., 14 60 (17) 7284-7299 (https://doi.org/10.1021/acs.jmedchem.7b00463).
26. Usachev B.I. (2018) Chemistry of Fluoroalkyl-substituted 1,2,3-Triazoles. J. Fluor. Chem., 210 6-45 (https://doi.org/10.1016/j.jfluchem.2018.02.012).
27. Ullah I., Ilyas M., Omer M., Alamzeb M., Adnan, and Sohail M. (2022) Fluorinated Triazoles as Privileged Potential Candidates in drug Development—focusing on their Biological and Pharmaceutical Properties. Front. Chem., 10 926723 (https://doi.org/10.3389/fchem.2022.926723).
28. Ma J-A., and Cahard D. (2004) Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions. Chem. Rev., 104 6119-6146 (https://doi.org/10.1021/cr030143e).
29. Kaiho T. (2015) Iodine Chemistry and Applications, Wiley-VCH, Weinheim.
30. Ma X., and Song Q. (2020) Recent Progress on Selective Deconstructive Modes of Halodifluoromethyl and Trifluoromethyl-containing Reagents. Chem. Soc. Rev., 49 9197-9219 (https://doi.org/10.1039/D0CS00604A).
31. Wang X., Lei J., Liu Y., Ye Y., Li J., and Sun K. (2021) Fluorination and Fluoroalkylation of Alkenes/Alkynes to Construct Fluorocontaining Heterocycles. Org. Chem. Front., 8 2079-2109 (https://doi.org/10.1039/D0QO01629B).
32. Pokorny J. (2007) Are Natural Antioxidants Better – and Safer – Than Synthetic Antioxidants? Eur. J. Lipid. Sci. Technol., 109 (6) 629-642 (http://dx.doi.org/10.1002/ejlt.200700064).
33. Stoia M., and Oancea S. (2022) Low-Molecular-Weight Synthetic Antioxidants: Classification, Pharmacological Profile, Effectiveness and Trends. Antioxidants (Basel)., 11 (4) 638 (https://doi.org/10.3390/antiox11040638).
34. Danyliuk I., Kovalenko N., Tolmachova V., Kovtun O., Saliyeva L., Slyvka N., Holota S., Kutrov G., Tsapko M., and Vovk M. (2023) Synthesis and Antioxidant Activity Evaluation of Some New 4-Thiomethyl Functionalized 1,3-thiazoles. Curr. Chem. Lett., 12 (4) 667-676 (https://doi.org/10.5267/j.ccl.2023.6.002).
35. Pham-Huy L.A., He H., and Pham-Huy C. (2008) Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci., 4 (2) 89-96 (https://doi.org/10.59566/IJBS.2008.4089).
36. Bouayed J., and Bohn T. (2010) Exogenous Antioxidants—Double-Edged Swords in Cellular Redox State: Health Beneficial Effects at Physiologic Doses Versus Deleterious Effects at High Doses. Oxid. Med. Cell. Longevity., 3 (4) 228-237 (https://doi.org/10.4161/oxim.3.4.12858).
37. Danyliuk I.Yu., Kemskyi S.V., Polishchuk V.M., Shishkina S.V., and Vovk M.V. (2024) Visible-light-induced Photocatalytic Iododi(per)fluoroalkylation of 5-Amino-N-allyl-1,2,3-Triazole-4-Carboxamides. J. Fluor. Chem., 276 110292 (https://doi.org/10.1016/j.jfluchem.2024.110292).
38. Marano S., Minnelli C., Ripani L., Marcaccio M., Laudadio E., Mobbili G., Amici A., Armeni T., and Stipa P. (2021) Insights into the Antioxidant Mechanism of Newly Synthesized Benzoxazinic Nitrones: In Vitro and In Silico Studies with DPPH Model Radical. Antioxidants., 10 (8) 1224 (https://doi.org/10.3390/antiox10081224).
39. Firsch M.J., Trucks G.W., and Schlegel H.B. (2016) Gaussian 09, Revision A.02, Wallingford CT.
40. Korkusuz E., Sert Y., Kılıçkaya Selvi E., Aydın H., Koca İ., and Yıldırım İ. (2023) Molecular Docking and Antioxidant Activity Studies of Imidodithiocarbonate Derivatives Containing Pyrimidine. Org. Commun., 16 (1) 1-10 (https://doi.org/10.25135/acg.oc.143.2212.2658).
41. Al-Balushi R.A., Al-Busaidi I.J., Al-Sharji H., Haque A., Faizi M.S.H., Dege N., Khan M.S., and Mohamed T.A. (2022). Synthesis, Structural, Photo-physical Properties and DFT Studies of Some Diarylheptanoids. J. Mol. Struct., 1264 133254. (https://doi.org/10.1016/j.molstruc.2022.133254).
42. Gázquez J.L., Cedillo A., and Vela A. (2007) Electrodonating and Electroaccepting Powers. J. Phys. Chem. A, 111 (10) 1966-1970 (https://doi.org/10.1021/jp065459f).
43. Domingo L.R. (2024) 1999 – 2024, a Quarter Century of the Parr’s Electrophilicity ω Index. Scientiae Radices. 3 (3) 157-186 (https://doi.org/10.58332/scirad2024v3i3a02).
44. Pérez P., Domingo L. R., José Aurell M., and Contreras R. (2003) Quantitative Characterization of the Global Electrophilicity Pattern of Some Reagents Involved in 1,3-Dipolar Cycloaddition Reactions. Tetrahedron, 59 (17) 3117–3125 (https://doi.org/10.1016/S0040-4020(03)00374-0).
45. Domingo L.R., Chamorro E., and Pérez P. (2008) Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study. J. Org. Chem., 73 (12) 4615–4624 (https://doi.org/10.1021/jo800572a).
46. El-Sheshtawy H.S., Ibrahim M.M., El-Mehasseb I., and El-Kemary M. (2015) Orthogonal Hydrogen/Halogen Bonding in 1-(2-Methoxyphenyl)-1H-imidazole-2(3H)-thione-I2 Adduct: An Experimental and Theoretical Study. Spectrochimica Acta Part A: Mol. Biomol. Spectroscopy., 143 (15) 120-127 (https://doi.org/10.1016/j.saa.2015.02.043).
47. Murray J.S., and Politzer P. (2011) The Electrostatic Potential: an Overview. Wiley Interdiscip. Rev. Comput. Mol. Sci., 1 (2) 153-163 (https://doi.org/10.1002/wcms.19).
48. Trott O., and Olson A.J. (2010) AutoDock Vina: Improving the Speed and Accuracy of Docking with a new Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem., 31 (2) 455-461 (https://doi.org/10.1002/jcc.21334).
49. Declercq J.-P., Evrard C., Clippe A., Stricht D.V., Bernard A., and Knoops B. (2001) Crystal Structure of Human Peroxiredoxin 5, a Novel Type of Mammalian Peroxiredoxin at 1.5 Å Resolution. J. Mol. Biol., 311 (4) 751-759 (https://doi.org/10.1006/jmbi.2001.4853).
50. Brand-Williams W., Cuvelier M.E., and Berset C. (1995) Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT – Food Science and Technology., 28 (1) 25-30 (https://doi.org/10.1016/S0023-6438(95)80008-5).