How to cite this paper
Ingale, A., Shinde, S & Thorat, N. (2024). Sulfated tungstate: A highly efficient, recyclable and ecofriendly catalyst for synthesis of Flavones under the solvent-free conditions.Current Chemistry Letters, 13(3), 603-610.
Refrences
1. Anastas, P. T., Williamson, T. C., (1998) Green chemistry: frontiers in benign chemical syntheses and processes, Oxford Science Publications, New York.
2. Matlack, A. S., (2001) Introduction to green chemistry, Marcel Dekker, Inc., New York.
3. Poliakoff, M., Anastas, P. T., (2001) A principled stance, Nature, 413, 257.
4. DeSimone, J. M., (2002) Practical approaches to green solvents, Science, 297, 799-803.
5. Mustafa, K., Mehmet, N., Mustafa, Z., Mustafa, A., Nurettin, Y., (2005) An Environmentally Benign Synthesis of Flavones from 1,3-diketones Using Silica Gel Supported NaHSO4 catalyst, J. Chem. Res. 9, 556-560.
6. Harborne, J. B., Williams, C. A., (1995) Anthocyanins and other flavonoids, Nat Prod Rep, 12, 639-657.
7. Schutz, B. A., Wright, A. D., Rali, T., Sticher, O., (1995) Prenylated flavanones from leaves of Macaranga pleiostemona, Phytochem., 40, 1273-77.
8. Chen, H. Y., Dykstra, K. D., Birzin, E. T., Frisch, K., Chan, W., Yang, Y. T., Mosley, R. T., DiNinno, F., Rohrer, S. P., Schaeffer, J. M., Hammond, M. L., (2004) Estrogen receptor ligands. Part 1: The discovery of flavanoids with subtype selectivity, Bioorg Med Chem Lett, 14, 1417-21.
9. Wu, E. S. C., Loch, I. I. I. J., Toder, B. H., Borrelli, A. R., Gawlak, D., Radow, L. A., Gensmantel, N. P., (1992) Flavones Synthesis, biological activities, and conformational analysis of isoflavone derivatives and related compounds, J Med Chem, 35, 3519-3525.
10. Holshouser, M. H., Loeffler, L. J., Hall, I. H., (1981) Synthesis and antitumor activity of a series of sulfone analogues of 1,4-naphthoquinone, J Med Chem, 24, 853-8.
11. Ullah Mughal, E., Ayaz, M., Hussain, Z., Hasan, A., Sadiq, A., Riaz, M., Malik, A., Hussain, S., Choudhary, M. I., (2006) Synthesis and antibacterial activity of substituted flavones, 4-thioflavones and 4-iminoflavones, Bioorg. Med. Chem, 14, 4704.
12. Hirao, I., Yamaguchi, M., Hamada, M., (1984) A convenient synthesis of 2- and 2,3-substituted 4H-chromen-4-ones, Synth., 1076.
13. Lee, J. I., Son, H. S., Jung, M. G., (2005) A Novel Synthesis of Flavones from 2-Methoxybenzoic Acids, Bull. Korean Chem. Soc., 26, 1461-1463.
14. Thorat, N. M., Kote, S. R., Thopate, S. R., (2014) An efficient and green synthesis of flavones using natural organic acids as promoter under solvent-free condition, Lett. Org. Chem., 11, 8, 601-605.
15. Thorat, N. M., Dengale, R. A., Thopate, S. R., Rohokale, S. V., (2015) Ammonium acetate promoted rapid and efficient synthesis of γ-benzopyranones and 3, 4-dihydropyrimidin-2 (1H)-ones/thiones under solvent-free conditions: a parallel scrutiny of microwave irradiation versus conventional heating, Lett. Org. Chem. 12, 8, 574-583.
16. Dengale, R. A., Thorat, N. M., Thopate, S. R., (2016) L-ascorbic acid: A green and competent promoter for solvent-free synthesis of flavones and coumarins under conventional as well as microwave heating, Lett. Org. Chem. 13, 10, 734-741.
17. Thorat, N. M., Sarkate, A. P., Lokwani, D. K., Tiwari, S.V., Azad, R., (2021) N-Benzylation of 6-aminoflavone by reductive amination and efficient access to some novel anticancer agents via topoisomerase II inhibition, Molecular diversity 25, 937-948.
18. Thorat, N. M., Thopate, S. R., Kote, S. R., Rohokale, S. V., (2011) Citric acid catalysed Beckmann rearrangement, under solvent free conditions, J. Chem. Res., 35, 2, 124-125.
19. Dhawale, K. D., Ingale, A. P., Pansare, M. S., Gaikwad, S. S., Thorat, N. M., Patil, L. R., (2022) Sulfated Tungstate as a Heterogeneous Catalyst for Synthesis of 3- Functionalized Coumarins under Solvent-Free Conditions, Polycycl Aromat Compd. 1-13.
20. Ingale, A. P., Shinde, S. V., Thorat, N. M., (2021) Sulfated tungstate: A highly efficient, recyclable and ecofriendly catalyst for chemoselective N-tert butyloxycarbonylation of amines under the solvent-free conditions, Synth. Commun. 51, 16, 2528-2543.
21. Zhu, X., Li, Z., Shu, Q., Zhou, C., Su, W., (2009) Mechanically Activated Solid-State Synthesis of Flavones by High-Speed Ball Milling, Syn. Comm., 39, 4199-4211.
22. Chimenti, F., Fioravanti, R., Bolasco, A., Chimentia, P., Secci, D., Rossi, F., Yáñez, M., Orallo, F., Ortuso, F., Alcaro, S., Cirilli, R., Ferretti, R., Sanna, M. L., (2010) A new series of flavones, thioflavones, and flavanones as selective monoamine oxidase-B inhibitors, Bioorg. Med. Chem., 18, 1273-1279.
23. Zheng, X., Zhao, F. F., Liu, Y. M., Yao, X. Z., Zheng, T. , Luo, X., Liao, D. F., (2010), Medicinal Chemistry, 6, 6.
24. Yoshida, M., Fujino, Y., Doi, T., (2011) Synthesis of γ-Benzopyranone by TfOH-Promoted Regioselective Cyclization of o-Alkynoylphenols, Org. Lett., 13, 4526-4529.
25. Du, Z., Ng, H., Zhang, K., Zeng, H., Wang, J., (2011) Ionic liquid mediated Cu-catalyzed cascade oxa-Michael-oxidation: efficient synthesis of flavones under mild reaction conditions, Org. Biomol. Chem., 9, 6930-6933.
26. Das, J., Ghosh, S., (2011) A new synthesis of flavones and pyranoflavone by intramolecular photochemical Wittig reaction in water, Tetrahedron Lett., 52, 7189-7194.
27. Rao, D. M., Rao, A. V. S., (1992) Synthesis of 2 cyclohexyl chromones under phase transfer catalysis conditions,” Ind. J. Chem. Sect. B, 31, 335.
28. Ahmed, F. S., Ahmed, F. M. EL-Mahdy, (2021) (E)-1,2-Diphenylethene-based conjugated nanoporous polymers for a superior adsorptive removal of dyes from water. New J Chem, 45(46), 21834–21843.
29. Ahmed, F. S., Kuan,Y. Chen, Ahmed, F. M., EL-Mahdy, Shiao-Wei Kuo, (2021) Designed azo-linked conjugated microporous polymers for CO2 uptake and removal applications. J. Polym. Res., 28(11), 430.