How to cite this paper
Ghafuri, H. (2014). Fast and green synthesis of biologically important quinoxalines with high yields in water.Current Chemistry Letters, 3(3), 183-188.
Refrences
1. Adams D. J., Dyson P. J., and Tavener S. J. (2005) Chemistry in alternative reaction media, Ed, John Wiley & Sons.
2. Leadbeater N. E. (2005) Fast, easy, clean chemistry by using water as a solvent and microwave heating: The suzuki coupling as an illustration. Chem. Commun., (23), 2881-2902.
3. Manabe K., Iimura S., Sun X.M., and Kobayashi S. (2002) Dehydration reactions in water. Br?nsted acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. J. Am. Chem. Soc., 124(40), 11971-11978.
4. Chankeshwara S. V., and Chakraborti A. K. (2006) Catalyst-free chemoselective n-tert-butyloxycarbonylation of amines in water. Org. Lett., 8(15), 3259-3262.
5. Ranu B. C., and Banerjee S. (2007) Significant rate acceleration of the aza-michael reaction in water. Tetrahedron Lett., 48(1), 141-143.
6. Saito A., Takayama M., Yamazaki A., Numaguchi J., and Hanzawa Y. (2007) Synthesis of tetrahydroisoquinolines and isochromans via pictet–spengler reactions catalyzed by br?nsted acid–surfactant-combined catalyst in aqueous media. Tetrahedron., 63(19), 4039-4047.
7. Sarges R., Howard H. R., Browne R. G., Lebel L. A., Seymour P. A., and Koe B. K. (1990) 4-amino [1, 2, 4] triazolo [4, 3-a] quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. J. Med. Chem., 33(8), 2240-2254.
8. Gomtsyan A., Bayburt E. K., Schmidt R. G., Zheng G. Z., Perner R. J., Didomenico S., Koenig J. R., Turner S., Jinkerson T., and Drizin I. (2005) Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: Structure-activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties. J. Med. Chem.,48(3), 744-752.
9. Seitz L. E., Suling W. J., and Reynolds R. C. (2002) Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J. Med. Chem., 45(25), 5604-5606.
10. Jaso A., Zarranz B., Aldana I., and Monge A. (2005) Synthesis of new quinoxaline-2-carboxylate 1, 4-dioxide derivatives as anti-mycobacterium t uberculosis agents. J. Med. Chem.,48(6), 2019-2025.
11. Dell A., Williams D. H., Morris H. R., Smith G. A., Feeney J., and Roberts G. C. (1975) Structure revision of the antibiotic echinomycin. J. Am. Chem. Soc., 97(9), 2497-2502.
12. Sato K., Shiratori O., and Katagiri K. (1967) The mode of action of quinoxaline antibiotics. Interaction of quinomycin a with deoxyribonucleic acid. J. Antibi., 20(5), 270.
13. Renault j., Baron M., Mailliet p and et al. (1981) Heterocyclic quinones.2.Quinoxaline-5,6-(and 5-8)-diones-Potential antitumoral agents. Eur. J. Med. Chem.,16 (6), 545–550.
14. Xianghong Wu., Anne E. V. Gorden (2007) Regioselective Synthesis of Asymmetrically Substituted 2-Quinoxalinol Salen Ligands. J. Org. Chem.,72 (23), 8691–8699.
15. Antoniotti S., and Du?ach E. (2002) Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1, 2-diamines. Tetrahedron Lett., 43(22), 3971-3973.
16. Raw S. A., Wilfred C. D., and Taylor R. J. (2003) Preparation of quinoxalines, dihydropyrazines, pyrazines and piperazines using tandem oxidation processes. Chem. Commun.,(18)., 2286-2287.
17. Goswami S., and Adak A. K. (2005) A novel one-pot two-component synthesis of tricyclic pyrano quinoxalines. Tetrahedron Lett.,46(2), 221-224.
18. Xekoukoulotakis N., Hadjiantoniou-Maroulis C., and Maroulis A. (2000) Synthesis of quinoxalines by cyclization of ?-arylimino oximes of ?-dicarbonyl compounds. Tetrahedron Lett., 41(52).10299-10302.
19. Goswami S., and Adak A. K. (2002) The first microwave-assisted regiospecific synthesis of 6-substituted pterins. Tetrahedron Lett., 43(46), 8371-8373.
20. Zhao Z., Wisnoski D. D., Wolkenberg S. E., Leister W. H., Wang Y., and Lindsley C. W. (2004) General microwave-assisted protocols for the expedient synthesis of quinoxalines and heterocyclic pyrazines. Tetrahedron Lett.,45(25), 4873-4876.
21. Wu Z., and Ede N. J. (2001) Solid-phase synthesis of quinoxalines on synphase™ lanterns. Tetrahedron Lett., 42(45), 8115-8118.
22. Heravi M. M., Tehrani M. H., Bakhtiari K., and Oskooie H. A. (2007) Zn [(l) proline]: A powerful catalyst for the very fast synthesis of quinoxaline derivatives at room temperature. Catal. Commun., 8(9), 1341-1344.
23. Heravi M. M., Bakhtiari K., Bamoharram F. F., and Tehrani M. H. (2007) Wells-dawson type heteropolyacid catalyzed synthesis of quinoxaline derivatives at room temperature. Monatsh. Chem., 138(5), 465-467.
24. Hazarika P., Gogoi P., and Konwar D. (2007) Efficient and green method for the synthesis of 1, 5?benzodiazepine and quinoxaline derivatives in water. Synth. Commun.,37(19), 3447-3454.
25. Heravi M. M., Bakhtiari K., Oskooie H. A., and Taheri S. (2008) Mncl2?promoted synthesis of quinoxaline derivatives at room temperature. Heteroatom Chem., 19(2), 218-220.
26. More S. V., Sastry M., and Yao C.-F. (2006) Cerium (iv) ammonium nitrate (can) as a catalyst in tap water: A simple, proficient and green approach for the synthesis of quinoxalines. Green Chem., 8(1), 91-95.
27. Zhou J. F., Gong G. X., Shi K. B andZhi S. J (2009) Montmorillonite K-10: an efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water. Chin. Chem. Lett., 20, 672.
28. Zhou J. F., Gong G. X., Zhi S.J. ., Duan X.L (2009) Microwave- assisted catalyst-free and solvent-free method for the synthesis of quinoazlines. Synth. Commun., 39, 3743.
2. Leadbeater N. E. (2005) Fast, easy, clean chemistry by using water as a solvent and microwave heating: The suzuki coupling as an illustration. Chem. Commun., (23), 2881-2902.
3. Manabe K., Iimura S., Sun X.M., and Kobayashi S. (2002) Dehydration reactions in water. Br?nsted acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. J. Am. Chem. Soc., 124(40), 11971-11978.
4. Chankeshwara S. V., and Chakraborti A. K. (2006) Catalyst-free chemoselective n-tert-butyloxycarbonylation of amines in water. Org. Lett., 8(15), 3259-3262.
5. Ranu B. C., and Banerjee S. (2007) Significant rate acceleration of the aza-michael reaction in water. Tetrahedron Lett., 48(1), 141-143.
6. Saito A., Takayama M., Yamazaki A., Numaguchi J., and Hanzawa Y. (2007) Synthesis of tetrahydroisoquinolines and isochromans via pictet–spengler reactions catalyzed by br?nsted acid–surfactant-combined catalyst in aqueous media. Tetrahedron., 63(19), 4039-4047.
7. Sarges R., Howard H. R., Browne R. G., Lebel L. A., Seymour P. A., and Koe B. K. (1990) 4-amino [1, 2, 4] triazolo [4, 3-a] quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. J. Med. Chem., 33(8), 2240-2254.
8. Gomtsyan A., Bayburt E. K., Schmidt R. G., Zheng G. Z., Perner R. J., Didomenico S., Koenig J. R., Turner S., Jinkerson T., and Drizin I. (2005) Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: Structure-activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties. J. Med. Chem.,48(3), 744-752.
9. Seitz L. E., Suling W. J., and Reynolds R. C. (2002) Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J. Med. Chem., 45(25), 5604-5606.
10. Jaso A., Zarranz B., Aldana I., and Monge A. (2005) Synthesis of new quinoxaline-2-carboxylate 1, 4-dioxide derivatives as anti-mycobacterium t uberculosis agents. J. Med. Chem.,48(6), 2019-2025.
11. Dell A., Williams D. H., Morris H. R., Smith G. A., Feeney J., and Roberts G. C. (1975) Structure revision of the antibiotic echinomycin. J. Am. Chem. Soc., 97(9), 2497-2502.
12. Sato K., Shiratori O., and Katagiri K. (1967) The mode of action of quinoxaline antibiotics. Interaction of quinomycin a with deoxyribonucleic acid. J. Antibi., 20(5), 270.
13. Renault j., Baron M., Mailliet p and et al. (1981) Heterocyclic quinones.2.Quinoxaline-5,6-(and 5-8)-diones-Potential antitumoral agents. Eur. J. Med. Chem.,16 (6), 545–550.
14. Xianghong Wu., Anne E. V. Gorden (2007) Regioselective Synthesis of Asymmetrically Substituted 2-Quinoxalinol Salen Ligands. J. Org. Chem.,72 (23), 8691–8699.
15. Antoniotti S., and Du?ach E. (2002) Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1, 2-diamines. Tetrahedron Lett., 43(22), 3971-3973.
16. Raw S. A., Wilfred C. D., and Taylor R. J. (2003) Preparation of quinoxalines, dihydropyrazines, pyrazines and piperazines using tandem oxidation processes. Chem. Commun.,(18)., 2286-2287.
17. Goswami S., and Adak A. K. (2005) A novel one-pot two-component synthesis of tricyclic pyrano quinoxalines. Tetrahedron Lett.,46(2), 221-224.
18. Xekoukoulotakis N., Hadjiantoniou-Maroulis C., and Maroulis A. (2000) Synthesis of quinoxalines by cyclization of ?-arylimino oximes of ?-dicarbonyl compounds. Tetrahedron Lett., 41(52).10299-10302.
19. Goswami S., and Adak A. K. (2002) The first microwave-assisted regiospecific synthesis of 6-substituted pterins. Tetrahedron Lett., 43(46), 8371-8373.
20. Zhao Z., Wisnoski D. D., Wolkenberg S. E., Leister W. H., Wang Y., and Lindsley C. W. (2004) General microwave-assisted protocols for the expedient synthesis of quinoxalines and heterocyclic pyrazines. Tetrahedron Lett.,45(25), 4873-4876.
21. Wu Z., and Ede N. J. (2001) Solid-phase synthesis of quinoxalines on synphase™ lanterns. Tetrahedron Lett., 42(45), 8115-8118.
22. Heravi M. M., Tehrani M. H., Bakhtiari K., and Oskooie H. A. (2007) Zn [(l) proline]: A powerful catalyst for the very fast synthesis of quinoxaline derivatives at room temperature. Catal. Commun., 8(9), 1341-1344.
23. Heravi M. M., Bakhtiari K., Bamoharram F. F., and Tehrani M. H. (2007) Wells-dawson type heteropolyacid catalyzed synthesis of quinoxaline derivatives at room temperature. Monatsh. Chem., 138(5), 465-467.
24. Hazarika P., Gogoi P., and Konwar D. (2007) Efficient and green method for the synthesis of 1, 5?benzodiazepine and quinoxaline derivatives in water. Synth. Commun.,37(19), 3447-3454.
25. Heravi M. M., Bakhtiari K., Oskooie H. A., and Taheri S. (2008) Mncl2?promoted synthesis of quinoxaline derivatives at room temperature. Heteroatom Chem., 19(2), 218-220.
26. More S. V., Sastry M., and Yao C.-F. (2006) Cerium (iv) ammonium nitrate (can) as a catalyst in tap water: A simple, proficient and green approach for the synthesis of quinoxalines. Green Chem., 8(1), 91-95.
27. Zhou J. F., Gong G. X., Shi K. B andZhi S. J (2009) Montmorillonite K-10: an efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water. Chin. Chem. Lett., 20, 672.
28. Zhou J. F., Gong G. X., Zhi S.J. ., Duan X.L (2009) Microwave- assisted catalyst-free and solvent-free method for the synthesis of quinoazlines. Synth. Commun., 39, 3743.