How to cite this paper
Sambare, A & Pawar, R. (2024). Enhanced gas sensing performance of Ag-Doped BiFeO3 microspheres synthesized via flash auto combustion technology.Current Chemistry Letters, 13(2), 367-376.
Refrences
1. E. Fauré, Å. Svenfelt, G. Finnveden, and A. Hornborg, (2016) “Four sustainability goals in a Swedish low-growth/degrowth context,” Sustain., 8 (11) 1–18.
2. S. Tajik et al., (2021), “Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants,” Ind. Eng. Chem. Res.,60 (3) 1112–1136.
3. M. M. McCartney et al., (2017), “An Easy to Manufacture Micro Gas Preconcentrator for Chemical Sensing Applications,” ACS Sensors., 2 (8) 1167–1174.
4. Mikami, K., Kido, Y., Akaishi, Y., Quitain, A., & Kida, T. (2019). Synthesis of Cu2O/CuO Nanocrystals and Their Application to H2S Sensing. Sensors, 19(1), 211.
5. P. S. Kolhe, P. M. Koinkar, N. Maiti, and K. M. Sonawane, (2017), “Synthesis of Ag doped SnO2 thin films for the evaluation of H2S gas sensing properties,” Phys. B Condens. Matter, 524 (7) 90–96.
6. A. Bala, S. B. Majumder, M. Dewan, and A. Roy Chaudhuri, (2019), “Hydrogen sensing characteristics of perovskite based calcium doped BiFeO3 thin films,” Int. J. Hydrogen Energy, 44 (33) 18648–18656.
7. D. Rathore, R. Kurchania, and R. K. Pandey, (2015), “Gas Sensing Properties of Size Varying CoFe2O4 Nanoparticles,” IEEE Sens. J., 15 (9) 4961–4966.
8. Dziubaniuk, M., Bujakiewicz-Korońska, R., Suchanicz, J., Wyrwa, J., & Rękas, M. (2013). Application of bismuth ferrite protonic conductor for ammonia gas detection. Sensors and Actuators B: Chemical, 188, 957–964.
9. Rao, S. K., Kalai Priya, A., Manjunath Kamath, S., Karthick, P., Renganathan, B., Anuraj, S., . . . Gopalakrishnan, C. (2020). Unequivocal evidence of enhanced room temperature sensing properties of clad modified Nd doped mullite Bi2Fe4O9 in fiber optic gas sensor. Journal of Alloys and Compounds, 838, 155603..
10. J. S. Hwang et al., “Reinforced magnetic properties of Ni-doped BiFeO3 ceramic,” (2016) J. Korean Phys. Soc., 69 (3) 282–285.
11. P. Kumar and P. Chand, (2018), “Structural, electric transport response and electro -strain - Polarization effect in La and Ni modified bismuth ferrite nanostructures,” J. Alloys Compd., 748 504–514.
12. J. Łojewska, A. Knapik, P. Jodłowski, T. Łojewski, A. Kołodziej, (2013) Topography and morphology of multicomponent catalytic materials based on Co, Ce and Pd oxides deposited on metallic structured carriers studied by AFM/Raman interlaced microscopes, Catal. Today, 216 11–17.
13. P.J. Jodłowski, D. Chlebda, E. Piwowarczyk, M. Chrzan, R.J. Jędrzejczyk, M. Sitarz, A. Węgrzynowicz, A. Kołodziej, J. Łojewska, (2016) In situ and operando spectroscopic studies of sonically aided catalysts for biogas exhaust abatement, J. Mol. Struct. 1126, 132–140.
14. S. Neogi and R. Ghosh, (2020), “Origin of irreversible to reversible transition in acetone detection for Y-doped BiFeO3perovskite,” J. Appl. Phys., 128 (14).
15. H. Xu, J. Xu, J. Wei, and Y. Zhang, (2020), “Fast response isopropanol sensing properties with sintered BiFeO3 nanocrystals,” Materials (Basel)., 13 (17).
16. T. Bagwaiya et al., (2018), “Investigation on gas sensing properties of Ag doped BiFeO3,” AIP Conf. Proc.,1942 1–5.
17. G. Dong, H. Fan, H. Tian, J. Fang, and Q. Li, (2015), “Gas-sensing and electrical properties of perovskite structure p-type barium-substituted bismuth ferrite,” RSC Adv.,5 (38) 29618–29623.
18. Q. Li, W. Zhang, C. Wang, J. Ma, L. Ning, and H. Fan, (2018), “Ag modified bismuth ferrite nanospheres as a chlorine gas sensor,” RSC Adv., 8 (58) 33156–33163.
19. X. L. Yu, Y. Wang, Y. M. Hu, C. B. Cao, and H. L. W. Chan, (2009), “Gas-sensing properties of perovskite BiFeO3 nanoparticles,” J. Am. Ceram. Soc., 92, (12) 3105–3107.
20. K. M. Zhu et al., (2019), “Preparation, characterizaton and formaldehyde gas sensing properties of walnut-shaped BiFeO 3 microspheres,” Mater. Lett., 246, 107–110.
21. S. Chakraborty and M. Pal, (2018), “Highly efficient novel carbon monoxide gas sensor based on bismuth ferrite nanoparticles for environmental monitoring,” New J. Chem., 42 (9), 7188–7196.
22. M. Dewan and S. B. Majumder, (2019), “Selective carbon monoxide sensing properties of bismuth iron oxide,” Materialia, 7 (2).
23. G. M. Albino, O. Perales-Pérez, B. Renteria-Beleño, and Y. Cedeño-Mattei, (2014), “Effect of Ca and Ag doping on the functional properties of BiFeO 3 nanocrystalline powders and films,” MRS Proc.,1675 105–111.
24. Q. Yu, Y. Zhang, and Y. Xu, (2021), “Hierarchical hollow BiFeO3microcubes with enhanced acetone gas sensing performance,” Dalt. Trans., 50 (19) 6702–6709.
25. Kuo-Chin Hsu, Te-Hua Fang, Shinn-Horng Chen, En-Yu Kuo, (2019),Gas sensitivity and sensing mechanism studies on ZnO/La0.8Sr0.2Co0.5Ni0.5O3 heterojunction structure, Ceramics International, 45 (7) 8744-8749, ISSN 0272-8842.
26. C.A. Neto , J.I. Yanagihara , F. Turri , (2008), A carbon monoxide transport model of the hu- man respiratory system applied to urban atmosphere exposure analysis, J. Braz. Soc. Mech. Sci. Eng., 30 253–260 .
27. G.F. Fine , L.M. Cavanagh , A. Afonja , R. Binions , (2010) Metaloxide semi-conductor gas sen- sors in environmental monitoring, Sensors .,10 5469–5502.
28. S. D. Waghmare, V. V. Jadhav, S. F. Shaikh, R. S. Mane, J. H. Rhee, and C. OʼDwyer, (2010), “Sprayed tungsten-doped and undoped bismuth ferrite nanostructured films for reducing and oxidizing gas sensor applications,” Sensors Actuators, A Phys., 271, 37–43.
29. S. D. Waghmare et al., (2020), “Pristine and palladium-doped perovskite bismuth ferrites and their nitrogen dioxide gas sensor studies,” J. King Saud Univ. – 32 (7) 3125–3130.
30. M. A. Ahmed, S. F. Mansour, S. I. El-Dek, and M. Abu-Abdeen, (2014), “Conduction and magnetization improvement of BiFeO3 multiferroic nanoparticles by Ag+ doping,” Mater. Res. Bull., 49 (1) 352–359.
31. Sambare, A.A., Datta, K.P., Shirsat, M.D., R.S.Pawar, (2022) Adsorption of gas molecules (CO, CO2, NO, NO2, and CH4) on undoped and Ag-doped bismuth ferrite oxide (BFO) by DFT investigation, Journal of Materials Research., 37, 4296–431.
32. Sambare, A.A., Pawar, R. & Shirsat, M., (2023), A DFT investigation on transition metal (Co, Cr, Cu, Mn, Mo and Nb)-doped bismuth ferrite oxide (BiFeO3) for CO gas adsorption,Theor Chem Acc.,142, 61.
2. S. Tajik et al., (2021), “Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants,” Ind. Eng. Chem. Res.,60 (3) 1112–1136.
3. M. M. McCartney et al., (2017), “An Easy to Manufacture Micro Gas Preconcentrator for Chemical Sensing Applications,” ACS Sensors., 2 (8) 1167–1174.
4. Mikami, K., Kido, Y., Akaishi, Y., Quitain, A., & Kida, T. (2019). Synthesis of Cu2O/CuO Nanocrystals and Their Application to H2S Sensing. Sensors, 19(1), 211.
5. P. S. Kolhe, P. M. Koinkar, N. Maiti, and K. M. Sonawane, (2017), “Synthesis of Ag doped SnO2 thin films for the evaluation of H2S gas sensing properties,” Phys. B Condens. Matter, 524 (7) 90–96.
6. A. Bala, S. B. Majumder, M. Dewan, and A. Roy Chaudhuri, (2019), “Hydrogen sensing characteristics of perovskite based calcium doped BiFeO3 thin films,” Int. J. Hydrogen Energy, 44 (33) 18648–18656.
7. D. Rathore, R. Kurchania, and R. K. Pandey, (2015), “Gas Sensing Properties of Size Varying CoFe2O4 Nanoparticles,” IEEE Sens. J., 15 (9) 4961–4966.
8. Dziubaniuk, M., Bujakiewicz-Korońska, R., Suchanicz, J., Wyrwa, J., & Rękas, M. (2013). Application of bismuth ferrite protonic conductor for ammonia gas detection. Sensors and Actuators B: Chemical, 188, 957–964.
9. Rao, S. K., Kalai Priya, A., Manjunath Kamath, S., Karthick, P., Renganathan, B., Anuraj, S., . . . Gopalakrishnan, C. (2020). Unequivocal evidence of enhanced room temperature sensing properties of clad modified Nd doped mullite Bi2Fe4O9 in fiber optic gas sensor. Journal of Alloys and Compounds, 838, 155603..
10. J. S. Hwang et al., “Reinforced magnetic properties of Ni-doped BiFeO3 ceramic,” (2016) J. Korean Phys. Soc., 69 (3) 282–285.
11. P. Kumar and P. Chand, (2018), “Structural, electric transport response and electro -strain - Polarization effect in La and Ni modified bismuth ferrite nanostructures,” J. Alloys Compd., 748 504–514.
12. J. Łojewska, A. Knapik, P. Jodłowski, T. Łojewski, A. Kołodziej, (2013) Topography and morphology of multicomponent catalytic materials based on Co, Ce and Pd oxides deposited on metallic structured carriers studied by AFM/Raman interlaced microscopes, Catal. Today, 216 11–17.
13. P.J. Jodłowski, D. Chlebda, E. Piwowarczyk, M. Chrzan, R.J. Jędrzejczyk, M. Sitarz, A. Węgrzynowicz, A. Kołodziej, J. Łojewska, (2016) In situ and operando spectroscopic studies of sonically aided catalysts for biogas exhaust abatement, J. Mol. Struct. 1126, 132–140.
14. S. Neogi and R. Ghosh, (2020), “Origin of irreversible to reversible transition in acetone detection for Y-doped BiFeO3perovskite,” J. Appl. Phys., 128 (14).
15. H. Xu, J. Xu, J. Wei, and Y. Zhang, (2020), “Fast response isopropanol sensing properties with sintered BiFeO3 nanocrystals,” Materials (Basel)., 13 (17).
16. T. Bagwaiya et al., (2018), “Investigation on gas sensing properties of Ag doped BiFeO3,” AIP Conf. Proc.,1942 1–5.
17. G. Dong, H. Fan, H. Tian, J. Fang, and Q. Li, (2015), “Gas-sensing and electrical properties of perovskite structure p-type barium-substituted bismuth ferrite,” RSC Adv.,5 (38) 29618–29623.
18. Q. Li, W. Zhang, C. Wang, J. Ma, L. Ning, and H. Fan, (2018), “Ag modified bismuth ferrite nanospheres as a chlorine gas sensor,” RSC Adv., 8 (58) 33156–33163.
19. X. L. Yu, Y. Wang, Y. M. Hu, C. B. Cao, and H. L. W. Chan, (2009), “Gas-sensing properties of perovskite BiFeO3 nanoparticles,” J. Am. Ceram. Soc., 92, (12) 3105–3107.
20. K. M. Zhu et al., (2019), “Preparation, characterizaton and formaldehyde gas sensing properties of walnut-shaped BiFeO 3 microspheres,” Mater. Lett., 246, 107–110.
21. S. Chakraborty and M. Pal, (2018), “Highly efficient novel carbon monoxide gas sensor based on bismuth ferrite nanoparticles for environmental monitoring,” New J. Chem., 42 (9), 7188–7196.
22. M. Dewan and S. B. Majumder, (2019), “Selective carbon monoxide sensing properties of bismuth iron oxide,” Materialia, 7 (2).
23. G. M. Albino, O. Perales-Pérez, B. Renteria-Beleño, and Y. Cedeño-Mattei, (2014), “Effect of Ca and Ag doping on the functional properties of BiFeO 3 nanocrystalline powders and films,” MRS Proc.,1675 105–111.
24. Q. Yu, Y. Zhang, and Y. Xu, (2021), “Hierarchical hollow BiFeO3microcubes with enhanced acetone gas sensing performance,” Dalt. Trans., 50 (19) 6702–6709.
25. Kuo-Chin Hsu, Te-Hua Fang, Shinn-Horng Chen, En-Yu Kuo, (2019),Gas sensitivity and sensing mechanism studies on ZnO/La0.8Sr0.2Co0.5Ni0.5O3 heterojunction structure, Ceramics International, 45 (7) 8744-8749, ISSN 0272-8842.
26. C.A. Neto , J.I. Yanagihara , F. Turri , (2008), A carbon monoxide transport model of the hu- man respiratory system applied to urban atmosphere exposure analysis, J. Braz. Soc. Mech. Sci. Eng., 30 253–260 .
27. G.F. Fine , L.M. Cavanagh , A. Afonja , R. Binions , (2010) Metaloxide semi-conductor gas sen- sors in environmental monitoring, Sensors .,10 5469–5502.
28. S. D. Waghmare, V. V. Jadhav, S. F. Shaikh, R. S. Mane, J. H. Rhee, and C. OʼDwyer, (2010), “Sprayed tungsten-doped and undoped bismuth ferrite nanostructured films for reducing and oxidizing gas sensor applications,” Sensors Actuators, A Phys., 271, 37–43.
29. S. D. Waghmare et al., (2020), “Pristine and palladium-doped perovskite bismuth ferrites and their nitrogen dioxide gas sensor studies,” J. King Saud Univ. – 32 (7) 3125–3130.
30. M. A. Ahmed, S. F. Mansour, S. I. El-Dek, and M. Abu-Abdeen, (2014), “Conduction and magnetization improvement of BiFeO3 multiferroic nanoparticles by Ag+ doping,” Mater. Res. Bull., 49 (1) 352–359.
31. Sambare, A.A., Datta, K.P., Shirsat, M.D., R.S.Pawar, (2022) Adsorption of gas molecules (CO, CO2, NO, NO2, and CH4) on undoped and Ag-doped bismuth ferrite oxide (BFO) by DFT investigation, Journal of Materials Research., 37, 4296–431.
32. Sambare, A.A., Pawar, R. & Shirsat, M., (2023), A DFT investigation on transition metal (Co, Cr, Cu, Mn, Mo and Nb)-doped bismuth ferrite oxide (BiFeO3) for CO gas adsorption,Theor Chem Acc.,142, 61.