How to cite this paper
Gad, M., Bakry, M., Shehata, E & Dabour, N. (2023). Insecticidal thioureas: Preparation and biochemical impacts of some novel thiobenzamide derivatives as potential eco-friendly insecticidal against the cotton leafworm, Spodoptera littoralis (Boisd.).Current Chemistry Letters, 12(4), 685-694.
Refrences
(1) Steelman C. D., Farlow J. E, breaud T. P. and schilling P. E. (1975) fffects of growth regulators on psorophora columbiae (Dyar and Knab) and non-target aquatic insect species in rice fields. Mosq. News. 35 (1) 67-76.
(2) Ables J., Jones R. and Bee M. J. (1977) Effect of diflubensuron on beneficial arthropodos associated with cotton. Southwest Entomol. 2, 66-72.
(3) Retnakaran A., J. Granett and Ennis T. (1985) Insect Growth Regulators, In: Comprehensive Insect Physiology, Biochemistry and Pharmacology (Eds. G.A. Kerkut and L.I. Gilbert,). Pergamon Press, Oxford. 12, 529.
(4) Bowers W. S., Ohta T., Cleere J. S. and Marsella P.A. (1978) Discovery of insect anti-juvenile hormones in plants. Sci. 193, 542-547.
(5) Bowers W.S. (1982) Toxicology of the precocenes, In: Insecticide mode of action (Ed. J.R. Coats,). Acad. Press, New York. pp. 403-420.
(6) Medina P., Smagghe G., Budia F., Estal P., Tirry L. and Vinuela E. (2002) Significance of penetration, excretion, and transovarial uptake to toxicity of three insect growth regulators in predatory lacewing adults. Arch. Insect. 51 (1) 91-101
(7) Mitsui T., Nobusawa C. and Fukami J. (1984) Mode of inhibition of chitin synthesis by diflubenzuron in the cabbage armyworm, Mamestra brassicae L. J. Pestic. Sci. 9 (1984) 19-26.
(8) Miura T. and Takahashi R. M. (1974)Insect development inhibitors; Effects of candidate mosquito control agents on non-target aquatic organism. Environ. Entomol. 3 (1974) 631-636.
(9) Miyamoto J., Hirano M., Takimoto Y. and Hatakoshi M. (1993) Insect growth regulators for pest control, with emphasis on juvenile hormone analogs: Present status and future prospects. ACS Symp. Ser., ACS, Washington, DC. 524 (1993) 144-168.
(10) Apperson C. S., Schaefer C. H., Colwell,A. E., Werner G. H.; et al. (1988) Efeects of diflubenzuron on Chaocorus astictopus and nontarget organisms and persistence of diflubenzorun in lentic habitats. J. Econ. Entomol. 71 521-527.
(11). Mulla M. S. (1995) The future of insect growth regulators in vector control. J. Ames. Mosq. Cont. Assoc.11, 269-273.
(12) Fye R. L. and Oliver J. E. (1974) Chemosterilants for the house fly. J. Agr. Food Chem., 22 (1974) 374-376.
(13) Negherbon W. O. (1959) Handbook of toxicology, Vol. II. W. B. Saunders Co., Philadelphia and London, pp. 24, 32
(14) Noguchi, T., Khomoto K., Yasuda Y., Hashimoto S., Kato K., Miyazaki K. and Kano S. (Nippon Soda Co. Ltd.) (1969) Thiophanate-methyl fungicide. Belg. Par., 734-43.
(15) Elmenofy W, El-Gaied L, Yasser N, Osman E, Sayed S, Abd E-M, Naguib E, Abdelal A (2021) Molecular characterization and biological activity of native Spodoptera littoralis nucleopolyhedrovirus isolate. Egypt J Biol Pest Control 31:88
(16) Abdelhamid, A. A.; Elwassimy, M. M.; Aref, S. A.; Gad, M. A. (2019) Chemical design and bioefficacy screening of new insect growth regulators as potential insecticidal agents against Spodoptera littoralis (Boisd.). Biotechnology Reports. 24 (2019) 394-401.
(17) Abdelhamid, A. A; Salama, K. S. M.; Elsayed , A. M.; Gad, M. A.; El-Remaily, M. A. A. A. (2022) Synthesis and Toxicological effect of some new pyrrole derivatives as prospective insecticidal agents against the cotton leafworm, spodoptera littoralis (Boisduval). ACS Omega 7 3990-4000.
(18) El-Gaby, M. S. A.; Ammar, Y. A.; Drar, A. M.; Gad, M. A. (2022) I nsecticidal bioefficacy screening of some chalcone and acetophenone hydrazone derivatives on Spodopetra Frugiperda (Lepidoptera: Noctuidae). Curr. Chem. Lett., 11 (2022) 263-268.
(19) Bakhite, E. A.; Marae, I. S.; Gad, M. A.; Mohamed, Sh. K.; Mague, J. T.; Abuelhassan, S. (2022) Pyridine Derivatives as Insecticides. Part 3. Synthesis, Crystal Structure, and Toxicological Evaluation of Some New Partially Hydrogenated Isoquinolines against Aphis gossypii (Glover, 1887). J. Agric. Food Chem. 70 (2022) 9637–9644.
(20) Abdelhamid, A. A.; Aref, S. A.; Ahmed, N. A.; Elsaghier, A. M. M.; Abd El Latif, F. M.; Al-Ghamdi, S. N.; Gad, M. A. (2023) Design, Synthesis, and Toxicological Activities of Novel Insect Growth Regulators as Insecticidal Agents against Spodoptera littoralis (Boisd.). ACS Omega. 8 (2023) 709–717.
(21) Ali, M. A.; Salah, H.; Gad, M. A.; Youssef, M. A. M; Elkanzi, N. A. A. (2022) Design, Synthesis, and SAR Studies of Some Novel Chalcone Derivatives for Potential Insecticidal Bioefficacy Screening on Spodoptera frugiperda (Lepidoptera: Noctuidae). ACS Omega. 7, 40091-40097.
(22) Abbott, W. S. A (1925) method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18, 265-267.
(23) Finny, D. J. (1952) Probit analysis: A statistical treatment of the sigmoid response curve, 2nd Ed, Cambridge Univ. Press, Cambridge, U. K.
(24) Sun, Y. P. (1950) Toxicity index an improved method of comparing the relative toxicity of insecticides. J. Econ. Entomol., 43, 45−53.
(25) Kula K., Łapczuk A., Kras J., Zawadzińska K., Demchuk O. M., Gaurav G. K., Wróblewska A. and Jasiński R. (2022) On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules 27 (23) 8409-8418.
(26) Zawadzińska K., Gadocha Z., Pabian K., Wróblewska A., Wielgus E. and Jasiński R. The First Examples of [3+2] Cycloadditions with the Participation of (E)-3,3,3-Tribromo-1-Nitroprop-1-Ene (2022) Materials. 15 (21) 7584-7593.
(27) Zawadzińska K., Ríos-Gutiérrez M., Kula K., Woliński P., Mirosław B., Krawczyk T. and Jasiński R. (2021) The Participation of 3,3,3-Trichloro-1-nitroprop-1-ene in the [3 + 2] Cycloaddition Reaction with Selected Nitrile N-Oxides in the Light of the Experimental and MEDT Quantum Chemical Study Molecules 26 (22) 6774.
(28) Wang J., Lv R., Jiang L., Song S., Wang K. and Zhang Q. (2022) Synthesis of N,N-dimethyl-3,5-dinitro-1H-pyrazol-4-amine and its energetic derivatives as promising melt-castable explosives. Chem. Heterocycl. Compd., 58 (10) 493–499.
(30) Obernilhina N. V., Kachaeva M. V., Kachkovsky O. D. and Brovarets V. S.(2022) In silico Study of Conjugated Nitrogen Heterocycles Affinity in thier Biological Complexs. Chem. Heterocycl. Compd. 58 (8/9) 412–420.
(2) Ables J., Jones R. and Bee M. J. (1977) Effect of diflubensuron on beneficial arthropodos associated with cotton. Southwest Entomol. 2, 66-72.
(3) Retnakaran A., J. Granett and Ennis T. (1985) Insect Growth Regulators, In: Comprehensive Insect Physiology, Biochemistry and Pharmacology (Eds. G.A. Kerkut and L.I. Gilbert,). Pergamon Press, Oxford. 12, 529.
(4) Bowers W. S., Ohta T., Cleere J. S. and Marsella P.A. (1978) Discovery of insect anti-juvenile hormones in plants. Sci. 193, 542-547.
(5) Bowers W.S. (1982) Toxicology of the precocenes, In: Insecticide mode of action (Ed. J.R. Coats,). Acad. Press, New York. pp. 403-420.
(6) Medina P., Smagghe G., Budia F., Estal P., Tirry L. and Vinuela E. (2002) Significance of penetration, excretion, and transovarial uptake to toxicity of three insect growth regulators in predatory lacewing adults. Arch. Insect. 51 (1) 91-101
(7) Mitsui T., Nobusawa C. and Fukami J. (1984) Mode of inhibition of chitin synthesis by diflubenzuron in the cabbage armyworm, Mamestra brassicae L. J. Pestic. Sci. 9 (1984) 19-26.
(8) Miura T. and Takahashi R. M. (1974)Insect development inhibitors; Effects of candidate mosquito control agents on non-target aquatic organism. Environ. Entomol. 3 (1974) 631-636.
(9) Miyamoto J., Hirano M., Takimoto Y. and Hatakoshi M. (1993) Insect growth regulators for pest control, with emphasis on juvenile hormone analogs: Present status and future prospects. ACS Symp. Ser., ACS, Washington, DC. 524 (1993) 144-168.
(10) Apperson C. S., Schaefer C. H., Colwell,A. E., Werner G. H.; et al. (1988) Efeects of diflubenzuron on Chaocorus astictopus and nontarget organisms and persistence of diflubenzorun in lentic habitats. J. Econ. Entomol. 71 521-527.
(11). Mulla M. S. (1995) The future of insect growth regulators in vector control. J. Ames. Mosq. Cont. Assoc.11, 269-273.
(12) Fye R. L. and Oliver J. E. (1974) Chemosterilants for the house fly. J. Agr. Food Chem., 22 (1974) 374-376.
(13) Negherbon W. O. (1959) Handbook of toxicology, Vol. II. W. B. Saunders Co., Philadelphia and London, pp. 24, 32
(14) Noguchi, T., Khomoto K., Yasuda Y., Hashimoto S., Kato K., Miyazaki K. and Kano S. (Nippon Soda Co. Ltd.) (1969) Thiophanate-methyl fungicide. Belg. Par., 734-43.
(15) Elmenofy W, El-Gaied L, Yasser N, Osman E, Sayed S, Abd E-M, Naguib E, Abdelal A (2021) Molecular characterization and biological activity of native Spodoptera littoralis nucleopolyhedrovirus isolate. Egypt J Biol Pest Control 31:88
(16) Abdelhamid, A. A.; Elwassimy, M. M.; Aref, S. A.; Gad, M. A. (2019) Chemical design and bioefficacy screening of new insect growth regulators as potential insecticidal agents against Spodoptera littoralis (Boisd.). Biotechnology Reports. 24 (2019) 394-401.
(17) Abdelhamid, A. A; Salama, K. S. M.; Elsayed , A. M.; Gad, M. A.; El-Remaily, M. A. A. A. (2022) Synthesis and Toxicological effect of some new pyrrole derivatives as prospective insecticidal agents against the cotton leafworm, spodoptera littoralis (Boisduval). ACS Omega 7 3990-4000.
(18) El-Gaby, M. S. A.; Ammar, Y. A.; Drar, A. M.; Gad, M. A. (2022) I nsecticidal bioefficacy screening of some chalcone and acetophenone hydrazone derivatives on Spodopetra Frugiperda (Lepidoptera: Noctuidae). Curr. Chem. Lett., 11 (2022) 263-268.
(19) Bakhite, E. A.; Marae, I. S.; Gad, M. A.; Mohamed, Sh. K.; Mague, J. T.; Abuelhassan, S. (2022) Pyridine Derivatives as Insecticides. Part 3. Synthesis, Crystal Structure, and Toxicological Evaluation of Some New Partially Hydrogenated Isoquinolines against Aphis gossypii (Glover, 1887). J. Agric. Food Chem. 70 (2022) 9637–9644.
(20) Abdelhamid, A. A.; Aref, S. A.; Ahmed, N. A.; Elsaghier, A. M. M.; Abd El Latif, F. M.; Al-Ghamdi, S. N.; Gad, M. A. (2023) Design, Synthesis, and Toxicological Activities of Novel Insect Growth Regulators as Insecticidal Agents against Spodoptera littoralis (Boisd.). ACS Omega. 8 (2023) 709–717.
(21) Ali, M. A.; Salah, H.; Gad, M. A.; Youssef, M. A. M; Elkanzi, N. A. A. (2022) Design, Synthesis, and SAR Studies of Some Novel Chalcone Derivatives for Potential Insecticidal Bioefficacy Screening on Spodoptera frugiperda (Lepidoptera: Noctuidae). ACS Omega. 7, 40091-40097.
(22) Abbott, W. S. A (1925) method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18, 265-267.
(23) Finny, D. J. (1952) Probit analysis: A statistical treatment of the sigmoid response curve, 2nd Ed, Cambridge Univ. Press, Cambridge, U. K.
(24) Sun, Y. P. (1950) Toxicity index an improved method of comparing the relative toxicity of insecticides. J. Econ. Entomol., 43, 45−53.
(25) Kula K., Łapczuk A., Kras J., Zawadzińska K., Demchuk O. M., Gaurav G. K., Wróblewska A. and Jasiński R. (2022) On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules 27 (23) 8409-8418.
(26) Zawadzińska K., Gadocha Z., Pabian K., Wróblewska A., Wielgus E. and Jasiński R. The First Examples of [3+2] Cycloadditions with the Participation of (E)-3,3,3-Tribromo-1-Nitroprop-1-Ene (2022) Materials. 15 (21) 7584-7593.
(27) Zawadzińska K., Ríos-Gutiérrez M., Kula K., Woliński P., Mirosław B., Krawczyk T. and Jasiński R. (2021) The Participation of 3,3,3-Trichloro-1-nitroprop-1-ene in the [3 + 2] Cycloaddition Reaction with Selected Nitrile N-Oxides in the Light of the Experimental and MEDT Quantum Chemical Study Molecules 26 (22) 6774.
(28) Wang J., Lv R., Jiang L., Song S., Wang K. and Zhang Q. (2022) Synthesis of N,N-dimethyl-3,5-dinitro-1H-pyrazol-4-amine and its energetic derivatives as promising melt-castable explosives. Chem. Heterocycl. Compd., 58 (10) 493–499.
(30) Obernilhina N. V., Kachaeva M. V., Kachkovsky O. D. and Brovarets V. S.(2022) In silico Study of Conjugated Nitrogen Heterocycles Affinity in thier Biological Complexs. Chem. Heterocycl. Compd. 58 (8/9) 412–420.