How to cite this paper
Dabhi, R., Patel, U., Rathod, V., Shah, S & Maru, J. (2023). Process optimization for acid-amine coupling: a catalytic approach.Current Chemistry Letters, 12(1), 133-140.
Refrences
1 Mahjour, B., Shen, Y., Liu, W., and Cernak, T. (2020). A map of the amine–carboxylic acid coupling system. Nature, 580(7801), 71-75.
2 Ivorra, M. D., Paya, M., and Villar, A. (1989). A review of natural products and plants as potential antidiabetic drugs. J. Ethnopharma., 27(3), 243-275.
3 Newman, D. J., and Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 79(3), 629-661.
4 Craik, D. J., Fairlie, D. P., Liras, S., and Price, D. (2013). The future of peptide‐based drugs. Che. Biol. Drug Des., 81(1), 136-147.
5 Guo, X., Facchetti, A., and Marks, T. J. (2014). Imide-and amide-functionalized polymer semiconductors. Chem. Rev., 114(18), 8943-9021.
6 Shukla, P., Sharma, A., and Sharma, A. (2017). Food additives from an organic chemistry perspective. MOJ Bio. Org. Chem., 1(3), 70-79.
7 Urquhart, L. (2018). Top drugs and companies by sales in 2017. Nat. Rev. Drug Discov., 17, 232.
8 Massolo, E., Pirola, M., and Benaglia, M. (2020). Amide bond formation strategies: Latest advances on a dateless transformation. Eur. J. Org. Chem., 30, 4641-4651.
9 Lanigan, R. M., and Sheppard, T. D. (2013). Recent developments in amide synthesis: Direct amidation of carboxylic acids and transamidation reactions. Eur. J. Org. Chem., 33, 7453-7465.
10 Demchuk, O.M., Jasiński, R., Formela, A. (2016). The Halogen-Less Catalytic Transition Metal-Mediated Cross-Coupling Reactions: A Sustainable Alternative for Utilisation of Organohalides. in: Tundo, P., He, LN., Lokteva, E., and Mota, C. (Eds) Chemistry Beyond Chlorine. Springer, Cham. 17-94.
11 Jasiński, R., Demchuk, O. M., and Babyuk, D. (2017). A Quantum-Chemical DFT Approach to Elucidation of the Chirality Transfer Mechanism of the Enantioselective Suzuki–Miyaura Cross-Coupling Reaction. J. Chem., Article ID 3617527, 12 pages.
12 Łapczuk-Krygier, A., Kącka-Zych, A., and Kula, K. (2019). Recent progress in the field of cycloaddition reactions involving conjugated nitroalkenes. Curr. Chem. Lett., 8(1), 13-38.
13 Jasiński, R., and Dresler, E. (2020). On the question of zwitterionic intermediates in the [3+ 2] cycloaddition reactions: A critical review. Organics, 1(1), 49-69.
14 Montalbetti, C. A., and Falque, V. (2005). Amide bond formation and peptide coupling. Tetrahedron, 61(46), 10827-10852.
15 Williams, A., and Ibrahim, I. T. (1981). Carbodiimide chemistry: recent advances. Chem. Rev., 81(6), 589-636.
16 Dunetz, J. R., Magano, J., and Weisenburger, G. A. (2016). Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals. Org. Process Res. Dev., 20(2), 140-177.
17 Rich, D. H., and Singh, J. (1979). The carbodiimide method. J. Maj. Meth. Pep. Bo. Form., 1, 241-261.
18 Singh, C., Kumar, V., Sharma, U., Kumar, N., and Singh, B. (2013). Emerging catalytic methods for amide synthesis. Curr. Org. Syn., 10(2), 241-264.
19 Valeur, E., and Bradley, M. (2009). Amide bond formation: beyond the myth of coupling reagents.
Chem. Soc. Rev., 38(2), 606-631.
20 Albeiicio, F., Chinchilla, R., Dodsworth, D. J., and Najera, C. (2001). New trends in peptide coupling reagents. Org. Pre. Pro. Int., 3, 203-303.
21 Parmar, T. H., Sangani, C. B., Parmar, N. D., and Bhalodiya, P. C. (2018). Synthesis and antimicrobial activity of some new of 2-(furan-2-yl)-1-(piperidin-4-yl)-1H-benzo [d] imidazole derivatives. Arkivoc, 2018, 7, 471-481.
22 Dhuda, G., Kapadiya, K., Ladwa, P., and Modha, J. (2020). S-Methylene linkage comprising 1, 3, 4-oxadiazoles: synthesis, reaction optimization and in vitro anti-microbial potential. Current Chem. Lett., 10(2), 109-118.
23 Albericio, F., Bofill, J. M., El-Faham, A., and Kates, S. A. (1998). Use of onium salt-based coupling
reagents in peptide Synthesis. J. Org. Chem., 63(26), 9678-9683.
24 Leggio, A., Belsito, E. L., De Luca, G., Di Gioia, M. L., Leotta, V., Romio, E., Siciliano, C., and
Liguori, A. (2016). One-pot synthesis of amides from carboxylic acids activated using thionyl chloride
RSC Adv., 6(41), 34468-34475.
25 Bi, X., Li, J., Shi, E., Li, Y., Liu, Y., Wang, H., and Xiao, J. (2019). POCl3 promoted metal-free synthesis of tertiary amides by coupling of carboxylic acids and N, N-disubstituted formamides. Phosphorus Sulfur Silicon Relat. Elem., 194(3), 236-240.
26 M Heravi, M., Asadi, S., and Azarakhshi, F. (2014). Recent applications of Doebner, Doebner-von Miller and Knoevenagel-Doebner reactions in organic syntheses. Curr. Org. Syn., 11(5), 701-731.
27 Dalessandro, E. V., Collin, H. P., Guimarães, L. G. L., Valle, M. S., and Pliego Jr, J. R. (2017). Mechanism of the piperidine-catalyzed Knoevenagel condensation reaction in methanol: the role of iminium and enolate ions. J. Phys. Chem. B, 121(20), 5300-5307.