How to cite this paper
Prasad, H., Ananda, A., Mukarambi, A., Gaonkar, N., Sumathi, S., Spoorthy, H & Mallu, P. (2023). Design, synthesis, and anti-bacterial activities of piperazine based phthalimide derivatives against superbug-Methicillin-Resistant Staphylococcus aureus.Current Chemistry Letters, 12(1), 65-78.
Refrences
1. Bergdoll M.S. (1991) Staphylococcus aureus. J. AOAC Int., 74(4), 706-710. (DOI:https://(DOI.org/10.1093/jaoac/74.4.706).
2. Campoccia D., Montanaro L., and Arciola C.R. (2013) A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials., 34(33), 8018-8029.
((DOI:https://(DOI.org/10.1016/j.biomaterials.2013.07.048).
3. Lowy FD. (1998) Staphylococcus aureus infections. New Eng. J. Med., 339(8), 520-532. (DOI: 10.1056/NEJM199808203390806).
4. Dantas G., Sommer M.O., Oluwasegun R.D., Church G.M. (2008) Bacteria subsisting on antibiotics. Science., 320(5872), 100-103. (DOI: 10.1126/science.1155157).
5. Berg A.T., Shapiro E.D., Capobianco L.A. (1991) Group Day care and the risk of serious infectious illnesses. Am. J. Epidemiol., 133(2), 154-163. (DOI: https://(DOI.org/10.1093/oxfordjournals.aje.a115854).
6. De Oliveira D.M., Forde B.M., Kidd T.J., Harris P.N., Schembri M.A., Beatson S.A., Walker M.J. (2020) Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev., 33(3), 00181-19. (DOI: https://(DOI.org/10.1128/CMR.00181-19.
7. Garrod L.P. (1957) The erythromycin group of antibiotics. BMJ., 2(5036):57. (DOI: https://dx.(DOI.org/10.1136%2Fbmj.2.5036.57).
8. Kasten, M. J. (1999, August). Clindamycin, metronidazole, and chloramphenicol. In Mayo Clin. Proc., 74(8), 825-83. (DOI: https://(DOI.org/10.4065/74.8.825).
9. Turel I., Bukovec P., Quirós (1997) Crystal structure of ciprofloxacin hexahydrate and its characterization. Int. J. Pharm., 152(1), 59-65. (DOI: https://(DOI.org/10.1016/S0378-5173(97)04913-2).
10. Mendez B., Tachibana C., Levy S.B. (1980) Heterogeneity of tetracycline resistance determinants. Plasmid. 3(2), 99-108. (DOI:https://(DOI.org/10.1016/0147-619X(80)90101-8).
11. Mediavilla J.R., Chen L., Mathema B., Kreiswirth B.N. (2012) Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Current opinion in microbiology, 15(5), 588-595. (DOI: https://(DOI.org/10.1016/j.mib.2012.08.003).
12. Enright M.C., Robinson D.A., Randle G., Feil E.J., Grundmann H., Spratt B.G. (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci., 99(11), 7687-7692.
(DOI: https://(DOI.org/10.1073/pnas.122108599).
13. Davis K.A., Stewart J.J., Crouch H.K., Florez C.E., Hospenthal D.R. (2004) Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Arch. Clin. Infect. Dis. 39(6), 776-782. (DOI: https://(DOI.org/10.1086/422997).
14. Bal A.M., David M.Z., Garau J., Gottlieb T., Mazzei T., Scaglione F., Gould IM. (2019) Future trends in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infection: an in-depth review of newer antibiotics active against an enduring pathogen. J. Glob. Antimicrob. Resist. 10, 295-303. (DOI: https://(DOI.org/10.1016/j.jgar.2017.05.019).
15. Foroumadi A., Emami S., Mansouri S., Javidnia A., Saeid-Adeli N., Shirazi F.H., Shafiee A. (2007) Synthesis and antibacterial activity of levofloxacin derivatives with certain bulky residues on piperazine ring. Eur. J. Med. Chem. 42(7), 985-992. (DOI: https://doi.org/10.1016/j.ejmech.2006.12.034)
16. Prasad H. N., Ananda A. P., Lohith T. N., Prabhuprasad P., Jayanth H. S., Krishnamurthy N. B. & Mallu P. (2022). Design, synthesis, molecular docking and DFT computational insight on the structure of Piperazine sulfynol derivatives as a new antibacterial contender against superbugs MRSA. J. Mol. Struct., 1247, 131333. (DOI: https://doi.org/10.1016/j.molstruc.2021.131333).
17. Rathi A.K., Syed R., Shin H.S., Patel R.V. (2016) Piperazine derivatives for therapeutic use: a patent review (2010). Expert Opin. Ther. Pat. 26(7), 777-797.
(DOI: https://(DOI:org/10.1080/13543776.2016.1189902).
18. Brito A.F., Moreira L.K., Menegatti R., Costa E.A. (2019) Piperazine derivatives with central pharmacological activity used as therapeutic tools. Fundam Clin Pharmacol., 33(1), 13-24. (DOI: https://(DOI.org/10.1111/fcp.12408).
19. Kushwaha N., Kaushik D. (2016) Recent advances and future prospects of phthalimide derivatives. J. Appl. Pharm. Sci. 6(03), 159-171. (DOI: 10.7324/JAPS.2016.60330).
20. Othman I.M., Gad-Elkareem M.A., El-Naggar M., Nossier E.S., Amr A.E.G.E. (2019) Novel phthalimide based analogues: Design, synthesis, biological evaluation, and molecular docking studies. J Enzyme Inhib Med Chem., 34(1), 1259-1270.
(DOI: https://(DOI.org/10.1080/14756366.2019.1637861).
21. Sangwan S, Yadav N, Kumar R, Chauhan S, Dhanda V, Walia P, Duhan A. (2022) A score years’ update in the synthesis and biological evaluation of medicinally important 2-pyridones. Eur. J. Med. Chem., 114-199. (DOI:https://(DOI.org/10.1016/j.ejmech.2022.114199).
22. Prasad, H. N., Ananda, A. P., Sumathi, S., Swathi, K., Rakesh, K. J., Jayanth, H. S., & Mallu, P. (2022). Piperazine selenium nanoparticle (Pipe@ SeNP's): A futuristic anticancer contender against MDA-MB-231 cancer cell line. J. Molec. Struc., 1268, 133683. (DOI: doi.org/10.1016/j.molstruc.2022.133683).
23. Efimov A.M., Pogareva V.G. (2006) IR absorption spectra of vitreous silica and silicate glasses: The nature of bands in the 1300 to 5000 cm− 1 regions. Chem. Geol., 229(1-3), 198-217. (DOI: https://(DOI.org/10.1016/j.chemgeo.2006.01.022).
24. Santos F.D., Abreu P., Castro H.C., Paixão I.C., Cirne-Santos C.C., Giongo V., Barbosa J.E., Simonetti B.R., Garrido V., Bou-Habib D.C., Silva D.D. (2009) Synthesis, antiviral activity and molecular modeling of oxoquinoline derivatives. Bioorg. Med. Chem., 17(15), 5476-81. (DOI:https://(DOI.org /10.1016/j.bmc.2009.06.037).
25. Jia C.Y., Li J.Y., Hao G.F., Yang G.F. (2020) A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov. Today. 25(1), 248-258.
(DOI: https://(DOI.org/10.1016/j.drudis.2019.10.014).
26. Xu X., Du C., Ma F., Shen Y., Zhou J. (2020) Forensic soil analysis using laser-induced breakdown spectroscopy (LIBS) and Fourier transform infrared total attenuated reflectance spectroscopy (FTIR-ATR): principles and case studies. Forensic Sci. Int., 310, 110222. (DOI: https://(DOI.org/10.1016/j.forsciint.2020.110222).
27. Dash S., Borah S.S., & Kalamdhad A.S. (2020) Application of positive matrix factorization receptor model and elemental analysis for the assessment of sediment contamination and their source apportionment of DeeporBeel. Ecol. Indic., 114, 106291. (DOI: https://(DOI.org/10.1016/j.ecolind.2020.106291).
28. Girase P.S., Dhawan S., Kumar V., Shinde S.R., Palkar M.B., Karpoormath R. (2021) An appraisal of anti-mycobacterial activity with structure-activity relationship of piperazine and its analogues: A review. Eur. J. Med. Chem. 210, 112967. (DOI: https://(DOI.org/10.1016/j.ejmech.2020.112967).
29. Prasad, H. S. N., Gaonkar, N. P., Ananda, A. P., Mukarambi, A., Kumar, G. C., Lohith, T. N.,& Beeregowda, N. (2022). Antibacterial Property of Schiff-based Piperazine against MRSA: Design, Synthesis, Molecular Docking, and DFT Computational Studies. Lett. Appl. NanoBioScience, 2, 54.
(https://doi.org/10.33263/LIANBS122.054).
30. Xu Z. (2020) 1, 2, 3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 112686. (DOI: https://(DOI.org/10.1016/j.ejmech.2020.112686).
31. Prasad H.N., Karthik C.S., Manukumar H.M., Mallesha L., Mallu P. (2019) New approach to address antibiotic resistance: Miss loading of functional membrane microdomains (FMM) of methicillin-resistant Staphylococcus aureus (MRSA). Microb. Pathog., 127, 106-115.
(DOI: https://(DOI.org/10.1016/j.micpath.2018.11.038).
32. Santoro F., Zhao W., Joubert L.M., Duan L., Schnitker J., van de BurgtY., Cui B. (2017) Revealing the cell–material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS nano., 11(8), 8320-8328.
(DOI: https://(DOI.org/10.1021/acsnano.7b03494).
33. Darvas F, Keseru G, Papp A, Dorman G, Urge L, Krajcsi P.(2002) In silico and ex silico ADME approaches for drug discovery. Curr. Top. Med. Chem., 2(12):1287-1304. (DOI: https://(DOI.org/10.2174/1568026023392841).
34. Gurjar V.K., Pal D. (2020) Design, in silico studies, and synthesis of new 1, 8-naphthyridine-3-carboxylic acid analogues and evaluation of their H1R antagonism effects. RSC Advances., 10(23), 13907-21.
(DOI:https://(DOI.org/10.1039/D0RA00746C).
35. Merlob P., Weber-Schöndorfer C. (2015) Antiallergics, Antiasthmatics and antitussives. Drugs During Pregnancy and Lactation., 671-676. (DOI: https://(DOI.org/10.1016/B978-0-12-408078-2.00027-5).
36. Parasuraman S. (2011) Prediction of activity spectra for substances. J Pharmacol Pharmacother, 2(1), 52.
(DOI: https://dx.(DOI.org/10.4103%2F0976-500X.77119).
37. Joshi P.R., Acharya M, Aryal R, Thapa K, Kakshapati T, Seng R, Singh A, Sitthisak S. (2017) Emergence of staphylococcal cassette chromosome mec type I with high-level mupirocin resistance among methicillin-resistant Staphylococcus aureus. Asian Pac. J. Trop. Biomed., 7(3), 193-7.
(DOI: https://(DOI.org/10.1016/j.apjtb.2016.12.002).
38. Berninger T., González López Ó., Bejarano., Preininger C., Sessitsch A. (2018) Maintenance and assessment of cell viability in formulation of non‐sporulating bacterial inoculants. Microbial biotechnology., 11(2), 277-301. (DOI:https://(DOI.Org /10.1111/1751-7915.12880).
39. Manuel A., Abdulrahman N. (2017) Determination of Minimum Inhibitory Concentration of Liposomes: A Novel Method. Int. J Curr. Microbiol. App. Sci., 6(8), 1140-1147. (DOI: http://dx.(DOI.org/10.20546/ijcmas.2017.602.141).
40. Jonasson E., Matuschek E., Kahlmeter G. (2020) The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. J. Antimicrob. Chemother., 75(4), 968-978. (DOI: https://(DOI.org/10.1093/jac/dkz548).
41. Ansari, M. A., & Alzohairy, M. A. (2018). One-pot facile green synthesis of silver nanoparticles using seed extract of Phoenix dactylifera and their bactericidal potential against MRSA. Evid Based Complement Alternat Med., 2018.
(DOI:https://(DOI.org/10.1155/2018/1860280).
42. Deb P.K., Al-Shar’i N.A., Venugopala K.N., Pillay M, Borah P. (2021) In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1, 2, 4-oxadiazole analogues against Mycobacterium tuberculosis. J Enzyme Inhib Med Chem., 36(1), 869-884.
(DOI: https://(DOI.org/10.1080/14756366.2021.1900162).
43. Miranda C.L., Stevens J.F., Helmrich A., Henderson M.C., Rodriguez R.J., Yang Y.H., Deinzer M.L., Barnes D.W., Buhler D.R. (1999) Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol., 37(4), 271-85. (DOI: https://(DOI.org/10.1016/S0278-6915(99)00019-8).
2. Campoccia D., Montanaro L., and Arciola C.R. (2013) A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials., 34(33), 8018-8029.
((DOI:https://(DOI.org/10.1016/j.biomaterials.2013.07.048).
3. Lowy FD. (1998) Staphylococcus aureus infections. New Eng. J. Med., 339(8), 520-532. (DOI: 10.1056/NEJM199808203390806).
4. Dantas G., Sommer M.O., Oluwasegun R.D., Church G.M. (2008) Bacteria subsisting on antibiotics. Science., 320(5872), 100-103. (DOI: 10.1126/science.1155157).
5. Berg A.T., Shapiro E.D., Capobianco L.A. (1991) Group Day care and the risk of serious infectious illnesses. Am. J. Epidemiol., 133(2), 154-163. (DOI: https://(DOI.org/10.1093/oxfordjournals.aje.a115854).
6. De Oliveira D.M., Forde B.M., Kidd T.J., Harris P.N., Schembri M.A., Beatson S.A., Walker M.J. (2020) Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev., 33(3), 00181-19. (DOI: https://(DOI.org/10.1128/CMR.00181-19.
7. Garrod L.P. (1957) The erythromycin group of antibiotics. BMJ., 2(5036):57. (DOI: https://dx.(DOI.org/10.1136%2Fbmj.2.5036.57).
8. Kasten, M. J. (1999, August). Clindamycin, metronidazole, and chloramphenicol. In Mayo Clin. Proc., 74(8), 825-83. (DOI: https://(DOI.org/10.4065/74.8.825).
9. Turel I., Bukovec P., Quirós (1997) Crystal structure of ciprofloxacin hexahydrate and its characterization. Int. J. Pharm., 152(1), 59-65. (DOI: https://(DOI.org/10.1016/S0378-5173(97)04913-2).
10. Mendez B., Tachibana C., Levy S.B. (1980) Heterogeneity of tetracycline resistance determinants. Plasmid. 3(2), 99-108. (DOI:https://(DOI.org/10.1016/0147-619X(80)90101-8).
11. Mediavilla J.R., Chen L., Mathema B., Kreiswirth B.N. (2012) Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Current opinion in microbiology, 15(5), 588-595. (DOI: https://(DOI.org/10.1016/j.mib.2012.08.003).
12. Enright M.C., Robinson D.A., Randle G., Feil E.J., Grundmann H., Spratt B.G. (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci., 99(11), 7687-7692.
(DOI: https://(DOI.org/10.1073/pnas.122108599).
13. Davis K.A., Stewart J.J., Crouch H.K., Florez C.E., Hospenthal D.R. (2004) Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Arch. Clin. Infect. Dis. 39(6), 776-782. (DOI: https://(DOI.org/10.1086/422997).
14. Bal A.M., David M.Z., Garau J., Gottlieb T., Mazzei T., Scaglione F., Gould IM. (2019) Future trends in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infection: an in-depth review of newer antibiotics active against an enduring pathogen. J. Glob. Antimicrob. Resist. 10, 295-303. (DOI: https://(DOI.org/10.1016/j.jgar.2017.05.019).
15. Foroumadi A., Emami S., Mansouri S., Javidnia A., Saeid-Adeli N., Shirazi F.H., Shafiee A. (2007) Synthesis and antibacterial activity of levofloxacin derivatives with certain bulky residues on piperazine ring. Eur. J. Med. Chem. 42(7), 985-992. (DOI: https://doi.org/10.1016/j.ejmech.2006.12.034)
16. Prasad H. N., Ananda A. P., Lohith T. N., Prabhuprasad P., Jayanth H. S., Krishnamurthy N. B. & Mallu P. (2022). Design, synthesis, molecular docking and DFT computational insight on the structure of Piperazine sulfynol derivatives as a new antibacterial contender against superbugs MRSA. J. Mol. Struct., 1247, 131333. (DOI: https://doi.org/10.1016/j.molstruc.2021.131333).
17. Rathi A.K., Syed R., Shin H.S., Patel R.V. (2016) Piperazine derivatives for therapeutic use: a patent review (2010). Expert Opin. Ther. Pat. 26(7), 777-797.
(DOI: https://(DOI:org/10.1080/13543776.2016.1189902).
18. Brito A.F., Moreira L.K., Menegatti R., Costa E.A. (2019) Piperazine derivatives with central pharmacological activity used as therapeutic tools. Fundam Clin Pharmacol., 33(1), 13-24. (DOI: https://(DOI.org/10.1111/fcp.12408).
19. Kushwaha N., Kaushik D. (2016) Recent advances and future prospects of phthalimide derivatives. J. Appl. Pharm. Sci. 6(03), 159-171. (DOI: 10.7324/JAPS.2016.60330).
20. Othman I.M., Gad-Elkareem M.A., El-Naggar M., Nossier E.S., Amr A.E.G.E. (2019) Novel phthalimide based analogues: Design, synthesis, biological evaluation, and molecular docking studies. J Enzyme Inhib Med Chem., 34(1), 1259-1270.
(DOI: https://(DOI.org/10.1080/14756366.2019.1637861).
21. Sangwan S, Yadav N, Kumar R, Chauhan S, Dhanda V, Walia P, Duhan A. (2022) A score years’ update in the synthesis and biological evaluation of medicinally important 2-pyridones. Eur. J. Med. Chem., 114-199. (DOI:https://(DOI.org/10.1016/j.ejmech.2022.114199).
22. Prasad, H. N., Ananda, A. P., Sumathi, S., Swathi, K., Rakesh, K. J., Jayanth, H. S., & Mallu, P. (2022). Piperazine selenium nanoparticle (Pipe@ SeNP's): A futuristic anticancer contender against MDA-MB-231 cancer cell line. J. Molec. Struc., 1268, 133683. (DOI: doi.org/10.1016/j.molstruc.2022.133683).
23. Efimov A.M., Pogareva V.G. (2006) IR absorption spectra of vitreous silica and silicate glasses: The nature of bands in the 1300 to 5000 cm− 1 regions. Chem. Geol., 229(1-3), 198-217. (DOI: https://(DOI.org/10.1016/j.chemgeo.2006.01.022).
24. Santos F.D., Abreu P., Castro H.C., Paixão I.C., Cirne-Santos C.C., Giongo V., Barbosa J.E., Simonetti B.R., Garrido V., Bou-Habib D.C., Silva D.D. (2009) Synthesis, antiviral activity and molecular modeling of oxoquinoline derivatives. Bioorg. Med. Chem., 17(15), 5476-81. (DOI:https://(DOI.org /10.1016/j.bmc.2009.06.037).
25. Jia C.Y., Li J.Y., Hao G.F., Yang G.F. (2020) A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov. Today. 25(1), 248-258.
(DOI: https://(DOI.org/10.1016/j.drudis.2019.10.014).
26. Xu X., Du C., Ma F., Shen Y., Zhou J. (2020) Forensic soil analysis using laser-induced breakdown spectroscopy (LIBS) and Fourier transform infrared total attenuated reflectance spectroscopy (FTIR-ATR): principles and case studies. Forensic Sci. Int., 310, 110222. (DOI: https://(DOI.org/10.1016/j.forsciint.2020.110222).
27. Dash S., Borah S.S., & Kalamdhad A.S. (2020) Application of positive matrix factorization receptor model and elemental analysis for the assessment of sediment contamination and their source apportionment of DeeporBeel. Ecol. Indic., 114, 106291. (DOI: https://(DOI.org/10.1016/j.ecolind.2020.106291).
28. Girase P.S., Dhawan S., Kumar V., Shinde S.R., Palkar M.B., Karpoormath R. (2021) An appraisal of anti-mycobacterial activity with structure-activity relationship of piperazine and its analogues: A review. Eur. J. Med. Chem. 210, 112967. (DOI: https://(DOI.org/10.1016/j.ejmech.2020.112967).
29. Prasad, H. S. N., Gaonkar, N. P., Ananda, A. P., Mukarambi, A., Kumar, G. C., Lohith, T. N.,& Beeregowda, N. (2022). Antibacterial Property of Schiff-based Piperazine against MRSA: Design, Synthesis, Molecular Docking, and DFT Computational Studies. Lett. Appl. NanoBioScience, 2, 54.
(https://doi.org/10.33263/LIANBS122.054).
30. Xu Z. (2020) 1, 2, 3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 112686. (DOI: https://(DOI.org/10.1016/j.ejmech.2020.112686).
31. Prasad H.N., Karthik C.S., Manukumar H.M., Mallesha L., Mallu P. (2019) New approach to address antibiotic resistance: Miss loading of functional membrane microdomains (FMM) of methicillin-resistant Staphylococcus aureus (MRSA). Microb. Pathog., 127, 106-115.
(DOI: https://(DOI.org/10.1016/j.micpath.2018.11.038).
32. Santoro F., Zhao W., Joubert L.M., Duan L., Schnitker J., van de BurgtY., Cui B. (2017) Revealing the cell–material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS nano., 11(8), 8320-8328.
(DOI: https://(DOI.org/10.1021/acsnano.7b03494).
33. Darvas F, Keseru G, Papp A, Dorman G, Urge L, Krajcsi P.(2002) In silico and ex silico ADME approaches for drug discovery. Curr. Top. Med. Chem., 2(12):1287-1304. (DOI: https://(DOI.org/10.2174/1568026023392841).
34. Gurjar V.K., Pal D. (2020) Design, in silico studies, and synthesis of new 1, 8-naphthyridine-3-carboxylic acid analogues and evaluation of their H1R antagonism effects. RSC Advances., 10(23), 13907-21.
(DOI:https://(DOI.org/10.1039/D0RA00746C).
35. Merlob P., Weber-Schöndorfer C. (2015) Antiallergics, Antiasthmatics and antitussives. Drugs During Pregnancy and Lactation., 671-676. (DOI: https://(DOI.org/10.1016/B978-0-12-408078-2.00027-5).
36. Parasuraman S. (2011) Prediction of activity spectra for substances. J Pharmacol Pharmacother, 2(1), 52.
(DOI: https://dx.(DOI.org/10.4103%2F0976-500X.77119).
37. Joshi P.R., Acharya M, Aryal R, Thapa K, Kakshapati T, Seng R, Singh A, Sitthisak S. (2017) Emergence of staphylococcal cassette chromosome mec type I with high-level mupirocin resistance among methicillin-resistant Staphylococcus aureus. Asian Pac. J. Trop. Biomed., 7(3), 193-7.
(DOI: https://(DOI.org/10.1016/j.apjtb.2016.12.002).
38. Berninger T., González López Ó., Bejarano., Preininger C., Sessitsch A. (2018) Maintenance and assessment of cell viability in formulation of non‐sporulating bacterial inoculants. Microbial biotechnology., 11(2), 277-301. (DOI:https://(DOI.Org /10.1111/1751-7915.12880).
39. Manuel A., Abdulrahman N. (2017) Determination of Minimum Inhibitory Concentration of Liposomes: A Novel Method. Int. J Curr. Microbiol. App. Sci., 6(8), 1140-1147. (DOI: http://dx.(DOI.org/10.20546/ijcmas.2017.602.141).
40. Jonasson E., Matuschek E., Kahlmeter G. (2020) The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. J. Antimicrob. Chemother., 75(4), 968-978. (DOI: https://(DOI.org/10.1093/jac/dkz548).
41. Ansari, M. A., & Alzohairy, M. A. (2018). One-pot facile green synthesis of silver nanoparticles using seed extract of Phoenix dactylifera and their bactericidal potential against MRSA. Evid Based Complement Alternat Med., 2018.
(DOI:https://(DOI.org/10.1155/2018/1860280).
42. Deb P.K., Al-Shar’i N.A., Venugopala K.N., Pillay M, Borah P. (2021) In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1, 2, 4-oxadiazole analogues against Mycobacterium tuberculosis. J Enzyme Inhib Med Chem., 36(1), 869-884.
(DOI: https://(DOI.org/10.1080/14756366.2021.1900162).
43. Miranda C.L., Stevens J.F., Helmrich A., Henderson M.C., Rodriguez R.J., Yang Y.H., Deinzer M.L., Barnes D.W., Buhler D.R. (1999) Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol., 37(4), 271-85. (DOI: https://(DOI.org/10.1016/S0278-6915(99)00019-8).