How to cite this paper
Khodairy, A., Mansour, E., Elhady, O & Drar, A. (2021). Novel N-cyanoguanidyl derivatives: Synthesis and studying their toxicological activity against Spodoptera littoralis and Schizaphis graminum ,.Current Chemistry Letters, 10(4), 363-370.
Refrences
(1) MegahedM. M. M., and Hamzah M. K. (2020) Susceptibility of Certain Egyptian Wheat Cultivars to Greenbug, Schizaphisgraminum (Rondani) (Homoptera: Aphididae) Infestation, Egypt Acad. J. Biolog. Sci., 13 (4) 147-257.
(2) Dahi H., El-Sayed Y., El-Barkey N., and Abd-El Aziz M. (2009) Toxicological and biochemical studies of methylamine avermactin, a new type of bioinsecticide against the cotton leaf worm, Spodoptera littoralis (Biosd). Egypt. Acad. J. Biol. Sci., A Entomol., 2 (1) 103-¬116.
(3) Hafez M., and Hassan S. (1969) On the correct identity of Egyptian cotton leaf-worm (Lepidoptera: Noctuidae). Bull. Soc. ent. egypte,53 63-68.
(4) Simon-Delso N., Amaral-Rogers V., Belzunces L. P., Bonmatin J. M., Chagnon M., Downs C., Furlan L., Gibbons D. W., Giorio C., Girolami V., Goulson D., Kreutzweiser D. P., Krupke C., Liess M.,
Long E., McField M., Mineau P., Mitchell E. A. D., Morrissey C. A., Noome D. A., Pisa L., Settele J., Stark J. D., Tapparo A., van Dyck H., van Praagh J., van der Sluijs J. P., Whitehorn P. R., and Wiemers M. (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res., 22 (1) 5–34.
(5) Buszewski B., Bukowska M., Ligor M., and Baranowska I. (2019) A holistic study of neonicotinoids neuroactive insecticides—properties, applications, occurrence, and analysis. Environ. Sci. Pollut. Res., 26 (34) 34723–34740.
(6) Jeschke P., Nauen R., Schindler M., and Elbert A. (2011) Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem., 59 (7) 2897–2908.
(7) Elbert A., Haas M., Springer B., Thielert W., and Nauen N. (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag. Sci., 64 (11) 1099-1105.
(8) Walther G., Daniel H., Bechtel W. D., and Brandt K. (1990) New tetracyclic guanidine derivatives with H1-antihistaminic properties. Chemistry of epinastine. Arzneim.Forsch.., 40 (4) 440-446.
(9) Prakash N., Elamaran M., and Ingarsal N. (2015) A New Approach to the Synthesis of Cyanamide: 2-Cyanoimino-4-aryl-6-(naphthalen-2-yl)-3,4-dihydro-1H-pyrimidines and their Antimicrobial Screening. Chem.Sci. Trans., 4 (4) 947-954.
(10) Aleksandrowicz P., Bukowska M., Maciejewski M., and Prejzner J. (1979) Cyanoethylation of the salts of cyanoguanidine in aprotic solvents. Can. J. Chem., 57 (19) 2593-2598.
(11) Moustafa A. H., Shestakov A. S., and ShikhalievKh. S. One-pot synthesis of 4-aryl-2-cyanoimino- 3,4-dihydro-1H-pyrimidines and their reactions.Chem. Heterocycl. Compd., 48 (4) 613-619.
(12) Amer A. A., andMoustafa A. H. (2017) New route for the synthesis of new cyanoimino and cyanoaminopyrimidines. Mol. Divers., 21 (4) 875–880.
(13) Amer A. A., and Moustafa A. H. (2018) Unexpected products from the reaction of chalcones with cyanoguanidine.Tetrahedron, 74 (2) 324-328.
(14) Amer A. A., andMoustafa A. H. (2017) Utility of is(methylthio) methylene malononitrile as a synthon in the synthesis of new poly-functionalized cyanoiminopyrimidines. Monatsh Chem., 148 (12) 2129–2134.
(15) Abdelhamid A. A., Elwassimy M. M., Aref S. A., and Gad M. A. (2019) Chemical design and bioefficacy screening of new insect growth regulators as potential insecticidal agents against Spodoptera littoralis (Boisd.). Biotechnology Reports, 24 (2019) 394-401.
(16) Gad M. A., Aref S. A., Abdelhamid A. A., Elwassimy M. M., and Abdel-Raheem Sh. A. A. (2021) Biologically active organic compounds as insect growth regulators (IGRs): introduction, mode of action, and some synthetic methods. Curr. Chem. Lett., Accepted Manuscript (DOI: 10.5267/j.ccl.2021.005.004).
(17) Nirwan N., Pareek Ch., and Swami V. K. (2020) Indolylimidazoles: Synthetic approaches and biological activities. Curr. Chem. Lett., 9 (2020) 31-50.
(18) Kamal El-Dean A. M., Abd-Ella A. A., Hassanien R., El-Sayed M. E. A., Zaki R. M., and Abdel-Raheem Sh. A. A. (2019) Chemical design and toxicity evaluation of new pyrimidothienotetrahydroisoquinolines as potential insecticidal agents. Toxicol. Rep., 6 (2019) 100-104.
(19) Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Zaki R. M., Hassanien R., El-Sayed M. E. A., Sayed M., and Abd-Ella A. A. (2021) Synthesis and toxicological studies on distyryl-substituted heterocyclic insecticides. Eur. Chem. Bull., 10 (4) 225-229.
(20) Tolba M. S., Sayed M., Abdel-Raheem Sh. A. A., Gaber T. A., Kamal El-Dean A. M., and Ahmed M. (2021) Synthesis and spectral characterization of some new thiazolopyrimidine derivatives. Curr. Chem. Lett., Accepted Manuscript (DOI: 10.5267/j.ccl.2021.4.004).
(21) Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., and Abd-Ella A. A. (2021) Synthesis and characterization of some distyryl-derivatives for agricultural uses. Eur. Chem. Bull., 10 (1) 35-38.
(22) Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., and Abd-Ella A. A. (2020) Synthesis and biological activity of 2-((3-Cyano-4,6-distyrylpyridin-2-yl)thio)acetamide and its cyclized form. Alger. j. biosciences, 01 (02) 046-050.
(23) Lingappa M., Guruswamy V., and Bantal V. (2021) Synthesis and characterization of 4-amino-4H-1,2,4-triazole derivatives: Anticonvulsant activity. Curr. Chem. Lett., 9 (2021) 33-42.
(24) Al-Taifi E. A., Abdel-Raheem Sh. A. A., and Bakhite E. A. (2016) Some reactions of 3-cyano-4-(p-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydroquinoline-2(1H)-thione; Synthesis of new tetrahydroquinolines and tetrahydrothieno[2,3-b]quinolines. Assiut University Journal of Chemistry (AUJC), 45 (1) 24-32.
(25) Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., Sayed M., and Abd-Ella A. A. (2021) Synthesis and spectral characterization of selective pyridine compounds as bioactive agents. Curr. Chem. Lett., 10 (2021) 255-260.
(26) Mayekar S. A., Chaskar A. C., and Mulwad V. V. (2009) Facile Synthesis of coumarinyl Isothiocyanate from Amino Coumarin. Synth. Comms., 40 )1(46-51.
(27) Entezari N., Akhlaghinia B., and Rouhi-Saadabad H. (2014) Direct and Facile Synthesis of Acyl Isothiocyanates from Carboxylic Acids Using Trichloroisocyanuric Acid/Triphenylphosphine System. Croat. Chem. Acta,87 (3) 201–206.
(28) O’Brien P. J., Abdel-Aal Y. A., Ottea J. A., and Graves J. B. (1992) Relationship of insecticide resistance to carboxylesterases in Aphis gossypii (Homoptera: Aphididae) from Midsouth cotton. J. Econ. Entomol., 85 (3) 651–657.
(29) Abbott W. S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18 (2) 265-267.
(30) Finny D. J. (1952) Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve, 2nd Ed, Cambridge Univ. Press, Cambridge, U. K.
(31) Tabashnik B. E., FinsonN. , and Johnson M. W. (1991) Managing resistance to Bacillus thuringiensis: Lessons from the diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol., 84 (1) 49-55.
(2) Dahi H., El-Sayed Y., El-Barkey N., and Abd-El Aziz M. (2009) Toxicological and biochemical studies of methylamine avermactin, a new type of bioinsecticide against the cotton leaf worm, Spodoptera littoralis (Biosd). Egypt. Acad. J. Biol. Sci., A Entomol., 2 (1) 103-¬116.
(3) Hafez M., and Hassan S. (1969) On the correct identity of Egyptian cotton leaf-worm (Lepidoptera: Noctuidae). Bull. Soc. ent. egypte,53 63-68.
(4) Simon-Delso N., Amaral-Rogers V., Belzunces L. P., Bonmatin J. M., Chagnon M., Downs C., Furlan L., Gibbons D. W., Giorio C., Girolami V., Goulson D., Kreutzweiser D. P., Krupke C., Liess M.,
Long E., McField M., Mineau P., Mitchell E. A. D., Morrissey C. A., Noome D. A., Pisa L., Settele J., Stark J. D., Tapparo A., van Dyck H., van Praagh J., van der Sluijs J. P., Whitehorn P. R., and Wiemers M. (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res., 22 (1) 5–34.
(5) Buszewski B., Bukowska M., Ligor M., and Baranowska I. (2019) A holistic study of neonicotinoids neuroactive insecticides—properties, applications, occurrence, and analysis. Environ. Sci. Pollut. Res., 26 (34) 34723–34740.
(6) Jeschke P., Nauen R., Schindler M., and Elbert A. (2011) Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem., 59 (7) 2897–2908.
(7) Elbert A., Haas M., Springer B., Thielert W., and Nauen N. (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag. Sci., 64 (11) 1099-1105.
(8) Walther G., Daniel H., Bechtel W. D., and Brandt K. (1990) New tetracyclic guanidine derivatives with H1-antihistaminic properties. Chemistry of epinastine. Arzneim.Forsch.., 40 (4) 440-446.
(9) Prakash N., Elamaran M., and Ingarsal N. (2015) A New Approach to the Synthesis of Cyanamide: 2-Cyanoimino-4-aryl-6-(naphthalen-2-yl)-3,4-dihydro-1H-pyrimidines and their Antimicrobial Screening. Chem.Sci. Trans., 4 (4) 947-954.
(10) Aleksandrowicz P., Bukowska M., Maciejewski M., and Prejzner J. (1979) Cyanoethylation of the salts of cyanoguanidine in aprotic solvents. Can. J. Chem., 57 (19) 2593-2598.
(11) Moustafa A. H., Shestakov A. S., and ShikhalievKh. S. One-pot synthesis of 4-aryl-2-cyanoimino- 3,4-dihydro-1H-pyrimidines and their reactions.Chem. Heterocycl. Compd., 48 (4) 613-619.
(12) Amer A. A., andMoustafa A. H. (2017) New route for the synthesis of new cyanoimino and cyanoaminopyrimidines. Mol. Divers., 21 (4) 875–880.
(13) Amer A. A., and Moustafa A. H. (2018) Unexpected products from the reaction of chalcones with cyanoguanidine.Tetrahedron, 74 (2) 324-328.
(14) Amer A. A., andMoustafa A. H. (2017) Utility of is(methylthio) methylene malononitrile as a synthon in the synthesis of new poly-functionalized cyanoiminopyrimidines. Monatsh Chem., 148 (12) 2129–2134.
(15) Abdelhamid A. A., Elwassimy M. M., Aref S. A., and Gad M. A. (2019) Chemical design and bioefficacy screening of new insect growth regulators as potential insecticidal agents against Spodoptera littoralis (Boisd.). Biotechnology Reports, 24 (2019) 394-401.
(16) Gad M. A., Aref S. A., Abdelhamid A. A., Elwassimy M. M., and Abdel-Raheem Sh. A. A. (2021) Biologically active organic compounds as insect growth regulators (IGRs): introduction, mode of action, and some synthetic methods. Curr. Chem. Lett., Accepted Manuscript (DOI: 10.5267/j.ccl.2021.005.004).
(17) Nirwan N., Pareek Ch., and Swami V. K. (2020) Indolylimidazoles: Synthetic approaches and biological activities. Curr. Chem. Lett., 9 (2020) 31-50.
(18) Kamal El-Dean A. M., Abd-Ella A. A., Hassanien R., El-Sayed M. E. A., Zaki R. M., and Abdel-Raheem Sh. A. A. (2019) Chemical design and toxicity evaluation of new pyrimidothienotetrahydroisoquinolines as potential insecticidal agents. Toxicol. Rep., 6 (2019) 100-104.
(19) Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Zaki R. M., Hassanien R., El-Sayed M. E. A., Sayed M., and Abd-Ella A. A. (2021) Synthesis and toxicological studies on distyryl-substituted heterocyclic insecticides. Eur. Chem. Bull., 10 (4) 225-229.
(20) Tolba M. S., Sayed M., Abdel-Raheem Sh. A. A., Gaber T. A., Kamal El-Dean A. M., and Ahmed M. (2021) Synthesis and spectral characterization of some new thiazolopyrimidine derivatives. Curr. Chem. Lett., Accepted Manuscript (DOI: 10.5267/j.ccl.2021.4.004).
(21) Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., and Abd-Ella A. A. (2021) Synthesis and characterization of some distyryl-derivatives for agricultural uses. Eur. Chem. Bull., 10 (1) 35-38.
(22) Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., and Abd-Ella A. A. (2020) Synthesis and biological activity of 2-((3-Cyano-4,6-distyrylpyridin-2-yl)thio)acetamide and its cyclized form. Alger. j. biosciences, 01 (02) 046-050.
(23) Lingappa M., Guruswamy V., and Bantal V. (2021) Synthesis and characterization of 4-amino-4H-1,2,4-triazole derivatives: Anticonvulsant activity. Curr. Chem. Lett., 9 (2021) 33-42.
(24) Al-Taifi E. A., Abdel-Raheem Sh. A. A., and Bakhite E. A. (2016) Some reactions of 3-cyano-4-(p-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydroquinoline-2(1H)-thione; Synthesis of new tetrahydroquinolines and tetrahydrothieno[2,3-b]quinolines. Assiut University Journal of Chemistry (AUJC), 45 (1) 24-32.
(25) Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., Sayed M., and Abd-Ella A. A. (2021) Synthesis and spectral characterization of selective pyridine compounds as bioactive agents. Curr. Chem. Lett., 10 (2021) 255-260.
(26) Mayekar S. A., Chaskar A. C., and Mulwad V. V. (2009) Facile Synthesis of coumarinyl Isothiocyanate from Amino Coumarin. Synth. Comms., 40 )1(46-51.
(27) Entezari N., Akhlaghinia B., and Rouhi-Saadabad H. (2014) Direct and Facile Synthesis of Acyl Isothiocyanates from Carboxylic Acids Using Trichloroisocyanuric Acid/Triphenylphosphine System. Croat. Chem. Acta,87 (3) 201–206.
(28) O’Brien P. J., Abdel-Aal Y. A., Ottea J. A., and Graves J. B. (1992) Relationship of insecticide resistance to carboxylesterases in Aphis gossypii (Homoptera: Aphididae) from Midsouth cotton. J. Econ. Entomol., 85 (3) 651–657.
(29) Abbott W. S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18 (2) 265-267.
(30) Finny D. J. (1952) Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve, 2nd Ed, Cambridge Univ. Press, Cambridge, U. K.
(31) Tabashnik B. E., FinsonN. , and Johnson M. W. (1991) Managing resistance to Bacillus thuringiensis: Lessons from the diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol., 84 (1) 49-55.