Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Current Chemistry Letters » Synthesis and spectral characterization of selective pyridine compounds as bioactive agents

Journals

  • IJIEC (726)
  • MSL (2637)
  • DSL (649)
  • CCL (495)
  • USCM (1092)
  • ESM (404)
  • AC (557)
  • JPM (247)
  • IJDS (912)
  • JFS (91)
  • HE (21)
  • SCI (0)

CCL Volumes

    • Volume 1 (23)
      • Issue 1 (7)
      • Issue 2 (5)
      • Issue 3 (6)
      • Issue 4 (5)
    • Volume 2 (26)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (7)
    • Volume 3 (30)
      • Issue 1 (7)
      • Issue 2 (10)
      • Issue 3 (8)
      • Issue 4 (5)
    • Volume 4 (21)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (6)
      • Issue 4 (5)
    • Volume 5 (20)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (5)
    • Volume 6 (20)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (5)
    • Volume 7 (15)
      • Issue 1 (4)
      • Issue 2 (4)
      • Issue 3 (4)
      • Issue 4 (3)
    • Volume 8 (20)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (5)
    • Volume 9 (20)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (5)
    • Volume 10 (43)
      • Issue 1 (5)
      • Issue 2 (7)
      • Issue 3 (17)
      • Issue 4 (14)
    • Volume 11 (43)
      • Issue 1 (14)
      • Issue 2 (11)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 12 (78)
      • Issue 1 (21)
      • Issue 2 (22)
      • Issue 3 (20)
      • Issue 4 (15)
    • Volume 13 (68)
      • Issue 1 (23)
      • Issue 2 (17)
      • Issue 3 (16)
      • Issue 4 (12)
    • Volume 14 (68)
      • Issue 1 (20)
      • Issue 2 (13)
      • Issue 3 (22)
      • Issue 4 (13)

Keywords

Jordan(161)
Supply chain management(160)
Vietnam(148)
Customer satisfaction(120)
Performance(113)
Supply chain(108)
Service quality(98)
Tehran Stock Exchange(94)
Competitive advantage(93)
SMEs(86)
optimization(84)
Financial performance(83)
Trust(81)
Job satisfaction(79)
Social media(78)
Factor analysis(78)
TOPSIS(78)
Knowledge Management(77)
Genetic Algorithm(76)
Sustainability(76)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(59)
Endri Endri(45)
Muhammad Alshurideh(42)
Hotlan Siagian(39)
Jumadil Saputra(36)
Muhammad Turki Alshurideh(35)
Dmaithan Almajali(35)
Barween Al Kurdi(32)
Basrowi Basrowi(31)
Hassan Ghodrati(31)
Ahmad Makui(31)
Mohammad Khodaei Valahzaghard(30)
Shankar Chakraborty(29)
Ni Nyoman Kerti Yasa(29)
Sulieman Ibraheem Shelash Al-Hawary(28)
Prasadja Ricardianto(28)
Sautma Ronni Basana(27)
Haitham M. Alzoubi(27)


» Show all authors

Countries

Iran(2162)
Indonesia(1276)
Jordan(783)
India(779)
Vietnam(500)
Saudi Arabia(438)
Malaysia(438)
United Arab Emirates(220)
China(181)
Thailand(151)
United States(109)
Turkey(102)
Ukraine(99)
Egypt(95)
Canada(89)
Pakistan(84)
Peru(83)
United Kingdom(77)
Nigeria(77)
Morocco(73)


» Show all countries

Current Chemistry Letters

ISSN 1927-730x (Online) - ISSN 1927-7296 (Print)
Quarterly Publication
Volume 10 Issue 3 pp. 255-260 , 2021

Synthesis and spectral characterization of selective pyridine compounds as bioactive agents Pages 255-260 Right click to download the paper Download PDF

Authors: Shaban A. A. Abdel-Raheem, Adel M. Kamal El-Dean, Reda Hassanien, Mohamed E. A. El-Sayed, Mostafa Sayed, Aly A. Abd-Ella

DOI: 10.5267/j.ccl.2021.2.001

Keywords: Synthesis, Evaluation, Cowpea aphid, Activity, Acetamiprid

Abstract: Starting from 3-cyano-4,6-distyrylpyridin-2(1H)-thione (1), the compound N-(4-chlorophenyl)-2-((3-cyano-4,6-distyrylpyridin-2-yl)thio)acetamide (2) was prepared. Compound (2) underwent cyclization upon heating in ethanolic sodium ethoxide solution to give the corresponding cyclized form 3-amino-N-(4-chlorophenyl)-4,6-distyrylthieno[2,3-b]pyridine-2-carboxamide (3). The elemental analyses and spectroscopic data of compounds (2) and (3) are in agreement with their proposed structures. Their insecticidal activity against cowpea aphid, Aphis craccivora Koch, was studied. The results of insecticidal activity for compounds (2) and (3) against the nymphs and the adults of the tested insects exhibited that compounds (2) and (3) have a higher insecticidal activity than that of acetamiprid, a reference insecticide, after 24 h of treatment.

How to cite this paper
Abdel-Raheem, S., El-Dean, A., Hassanien, R., El-Sayed, M., Sayed, M & Abd-Ella, A. (2021). Synthesis and spectral characterization of selective pyridine compounds as bioactive agents.Current Chemistry Letters, 10(3), 255-260.

Refrences

1. Bakhite E. A., Abd-Ella A. A., El-Sayed M. E. A., and Abdel-Raheem Sh. A. A. (2014) Pyridine derivatives as insecticides. Part 1: Synthesis and toxicity of some pyridine derivatives against Cowpea Aphid, Aphis craccivora Koch (Homoptera: Aphididae). J. Agric. Food Chem., 62 (41) 9982–9986.
2. Bakhite E. A., Abd-Ella A. A., El-Sayed M. E. A., and Abdel-Raheem Sh. A. A. (2017) Pyridine derivatives as insecticides. Part 2: Synthesis of some piperidinium and morpholinium cyanopyridinethiolates and their Insecticidal Activity. J. Saud. Chem. Soc., 21 (1) 95–104.
3. Kamal El-Dean A. M., Abd-Ella A. A., Hassanien R., El-Sayed M. E. A., Zaki R. M., and Abdel-Raheem Sh. A. A. (2019) Chemical design and toxicity evaluation of new pyrimidothienotetrahydroisoquinolines as potential insecticidal agents. Toxicol. Rep., 6 100-104.
4. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., and Abd-Ella A. A. (2021) Synthesis and characterization of some distyryl-derivatives for agricultural uses. Eur. Chem. Bull., 10 (1) 35-38.
5. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., and Abd-Ella A. A. (2020) Synthesis and biological activity of 2-((3-Cyano-4,6-distyrylpyridin-2-yl)thio)acetamide and its cyclized form. Alger. j. biosciences, 01 (02) 046-050.
6. Kamal El-Dean A. M., Abd-Ella A. A., Hassanien R., El-Sayed M. E. A., and Abdel-Raheem Sh. A. A. (2019) Design, Synthesis, Characterization, and Insecticidal Bioefficacy Screening of Some New Pyridine Derivatives. ACS Omega, 4 (5) 8406-8412.
7. Zaki R. M., Kamal El-Dean A. M., Mickey J. A., Marzouk N. A., and Ahmed R. H. (2017) Synthesis, reactions, and antioxidant activity of 3-(pyrrol-1-yl)-4,6-dimethyl selenolo[2,3-b]pyridine derivatives. Synth. Commun., 47 (24) 2406-2416.
8. Altaf A. A., Shahzad A., Gul Z., Rasool N., Badshah A., Lal B., and Khan E. A (2015) Review on the Medicinal Importance of Pyridine Derivatives. J. Drug Des. Med. Chem., 1 (1) 1-11.
9. Lukevits É. (1995) Pyridine derivatives in the drug arsenal (150 years of pyridine chemistry). Chem. Heterocycl. Compd., 31 (6) 639–650.
10. Zhang N., Tomizawa M., and Casida J. E. (2004) α-Nitro Ketone as an Electrophile and Nucleophile: Synthesis of 3-Substituted 2-Nitromethylenetetrahydrothiophene and tetrahydrofuran as Drosophila Nicotinic Receptor Probes. J. Org. Chem., 69 (3) 876-881.
11. Shimomura M., Yokota M., Ihara M., Akamatsu M., Sattelle D. B., and Matsuda K. (2006) Role in the Selectivity of Neonicotinoids of Insect-Specific Basic Residues in Loop D of the Nicotinic Acetylcholine Receptor Agonist Binding Site. Mol. Pharmacol., 70 (4) 1255–1263.
12. Tomizawa M., and Casida J. E. (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu. Rev. Entomol., 48 339–364.
13. Tomizawa M., Talley T., Maltby D., Durkin K. A., Medzihradszky K. F., Burlingame A. L., Taylor P., and Casida J. E. (2007) Mapping the elusive neonicotinoid binding site. Proc. Natl. Acad. Sci. U.S.A., 104 (21) 9075–9080.
14. Kagabu S., Ishihara R., Nishimura K., and Naruse Y. (2007) Insecticidal and neuroblocking potencies of variants of the imidazolidine moiety of imidacloprid-related neonicotinoids and the relationship to partition coefficient and charge density on the pharmacophore. J. Agric. Food Chem., 55 (3) 812–818.
15. Yang Z. B., Hu D. Y., Zeng S., and Song B. A. (2016) Novel hydrazone derivatives containing pyridine amide moiety: Design, synthesis, and insecticidal activity. Bioorg. Med. Chem. Lett., 26 (4) 1161-1164.
16. O’Brien P. J., Abdel-Aal Y. A., Ottea J. A., and Graves J. B. (1992) Relationship of insecticide resistance to carboxylesterases in Aphis gossypii (Homoptera: Aphididae) from Midsouth cotton. J. Econ. Entomol., 85 (3) 651–657.
17. Abbott W. S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18 (2) 265–267.
18. Finney D. J. (1952) Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve, 2nd Ed, Cambridge Univ. Press, Cambridge, U. K.
  • 51
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Current Chemistry Letters | Year: 2021 | Volume: 10 | Issue: 3 | Views: 1453 | Reviews: 0

Related Articles:
  • S-Methylene linkage comprising 1,3,4-oxadiazoles: synthesis, reaction optim ...
  • Synthesis and characterization of 4-amino-4H-1,2,4-triazole derivatives: An ...
  • Synthesis and characterization of 4-((5-bromo-1H-pyrazolo [3,4-b]pyridin-3- ...
  • Facile multi-components one-pot synthesis of dipyrazolo[1,5-a:3',4'-d]pyr ...
  • The synthesis of 2-arylquinoxaline derivatives

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com