How to cite this paper
Nirwan, N & Pareek, C. (2021). Greener and efficient one-pot synthesis of novel multi-substituted 3-(4,5-diphenyl-1H-imidazol-2-yl)-1H-indole derivatives by using recyclable catalyst under microwave irradiation.Current Chemistry Letters, 10(3), 261-270.
Refrences
[1] Nirwan N., Pareek C., and Swami V. K. (2020) Indolylimidazoles: Synthetic approaches and biological activities. Current Chem. Lett., 9 (1) 31–50.
[2] Kawasaki I., Katsuma H., Nakayama Y., Yamashita M., and Ohta S. (1998) Total Synthesis of Topsentin, Antiviral and Antitumor Bis(indolyl)imidazole. Heterocycles, 48 (9) 1887-1901.
[3] Burres N. S., Barber D. A., Gunasekera S. P., Shen L. L., and Clement J. J. (1991) Antitumor activity and biochemical effects of Topsentin. Biochem. Pharmacol., 42 (4) 745–751.
[4] Bartik K., Braekman J. C., Daloze D., Stoller C., Huysecom J., Vandevyver G., and Otringer R. (1987) Topsentins, new toxic bis-indole alkaloids from the marine sponge Topsentia genitrix. Can. J. Chem., 65 (9) 2118–2121.
[5] Morris S. A., and Andersen R. J. (1990) Brominated bis(indole) alkaloids from the marine sponge hexadella SP. Tetrahedron, 46 (3)715–720.
[6] Bao B., Sun Q., Yao X., Hong J., Lee C. O., Sim C. J., Im K. S., and Jung J. H. (2005) Cytotoxic bisindole alkaloids from a marine sponge Spongosorites sp. J. Nat. Prod., 68 (5) 711–715.
[7] Tsujii S., Rinehart K. L., Gunasekera S. P., Kashman Y., Cross S. S., Lui M. S., Pomponi S. A., and Diaz M. C. (1998) Topsentin, bromo topsentin, and dihydroxy bromo topsentin: antiviral and antitumor bis(indolyl) imidazoles from Caribbean deep-sea sponges of the family Halichondriidae, Structural and synthetic studies. J. of Org. Chem., 53 (23) 5446-5453.
[8] Shin J., Seo Y., Cho K. W., Rho J. R., and Sim C. J. (1999) New bis(indole) alkaloids of the topsentin class from the sponge Spongosorites genitrix. J. Nat. Prod., 62 (4) 647–649.
[9] Casapullo G., Bifulco I., Bruno R., and Riccio (2000) New bisindole alkaloids of the topsentin and hamacanthin classes from the Mediterranean marine sponge Rhaphisia lacazei. J. Nat. Prod., 63 (4) 447–451.
[10] McConnell O. J., Saucy G., and Jacobs R. (1994). US Patent 5,290,777.
[11] Wright A. E., Pomponi S. A., and Roberts J. A. (1999). Patent WO 9,942,092.
[12] Sakemi S., and Sun H. H. (1991) Nortopsentins A, B, and C. Cytotoxic and Antifungal Imidazolediylbis[indoles] from the Sponge Spongoaorites ruetzleri. J. Org. Chem., 56 (13) 4304–4307.
[13] Alvarado S., Roberts B. F., Wright A. E., and Chakrabarti D. (2013) The bis(Indolyl)imidazole alkaloid nortopsentin a exhibits antiplasmodial activity. Antimicrob. Agents Chemother., 57 (5) 2362–2364.
[14] Sun H. H., Sakemi S., Gunasekera S., Kashman Y., Lui M., Burres N., and McCarthy P. (1919) US Patent 4,970,226. Chem. Abstr. 11535701z.
[15] Bewely C. A, and Faulkner D. J. (1998) Lithistid sponges: Star performers or hosts to the stars. Angewandte Chem. International Ed. in Eng., 37 (16) 2162-2178.
[16] Cohen J., Paul G. K., Gunasekera S. P., Longley R. E., and Pomponi S. A. (2004) 6-Hydroxydiscodermindole, a new discodermindole from the marine sponge Discodermia polydiscus. Pharm. Biol., 42 (1) 59–61.
[17] Hogan I. T., and Sainsbury M. (1984) The synthesis of dendrodoine, 5-[3-(N,N-dimethylamino- 1,2,4-thiadiazolyl]-3-indolylmethanone, a metabolite of the marine tunicate dendroda grossular. Tetrahedron, 40 (4) 681–682.
[18] Capon R. J., Peng C., and Dooms C. (2008) Trachycladindoles A-G: Cytotoxic heterocycles from an Australian marine sponge, Trachycladus laevispirulifer. Org. Biomol. Chem., 6 (15) 2765–2771.
[19] Sato H., Tsuda M., Watanabe K., and Kobayashi J. (1998) Rhopaladins A ~ D, new indole alkaloids from marine tunicate Rhopalaea sp. Tetrahedron, 54 (30) 8687–8690.
[20] Hlasta D. J. (1991) US patent 5,017,584. Chem. Abstr. (1991) 115, 232,249.
[21] Karabelas K., Lepisto M., and Sjo P. (2000) Word patent WO 2,000,078,750. Chem. Abstr. (2000) 13, 471,594.
[22] Karabelas K., Lepisto M., and Sjo P. (1999) Word patent WO 9,932,483. Chem. Abstr. (1999) 13, 158,823.
[23] Levy L. (1977) Proceedings, Soc. Exp. Biol. Med., 153 34-36. Chem. Abstr. (1977) 86,25,978.
[24] Hoff D. R. DE. (1970) 1,962,822, Chem. Abstr. (1970) 7,387,931.
[25] Doemling A., and Beck B. (2001) Word patent WO 2001,025,213. Chem. Abstr. (2001) 134,295,819.
[26] Reddy Y. T., Sekhar K. R., Sasi N., Reddy P. N., Freeman M. L., and Crooks P.A. (2010) Novel substituted (Z)-5-((N-benzyl-1H-indol-3-yl)methylene)imidazolidine-2,4-diones and 5-((N-benzyl-1H-indol-3-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-triones as potent radio-sensitizing agents. Bioorganic Med. Chem. Lett., 20 (2) 600–602.
[27] Roffey J. R. A. (1996) PhD thesis, Loughborough University, UK.
[28] Zoraghi R., Worrall L., See R. H., Strangman W., Popplewell W. L., Gong H., Samaai T., Swayze R. D., Kaur S., Vuckovic M., Finlay B. B., Brunham R. C., McMaster W. R., Davies-Coleman M. T., Strynadka N. C., Andersen R. J., and Reiner N. E. (2011) Methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase as a target for bis-indole alkaloids with antibacterial activities. J. Biol. Chem. 286 (52) 44716–44725.
[29] Hilya V. P., Grishko L. G., Golubushina G. M., Arkhipova N. N., and Turov A. V. (1994) Khim. Geterotsikl. Soedin., 1063–1070. Chem. Abstr. (1995) 122, 314495.
[30] Mahmoodi N.O., Nikokar I., Farhadi M., and Ghavidast A. (2014) One-pot multicomponent synthesis of mono- and bis-indolylimidazole derivatives using Zn2+@KSF and their antibacterial activity. Zeitschrift Fur Naturforsch. Sect. B J. Chem. Sci., 69 (6) 715–720.
[31] Pareek C., Pareek D., Nirwan N., and Jain A. (2018) An Efficient Combinatorial Approach for Beta-Lactam Antibiotics with Novel Adjuvants against Gram-Negative Organisms to Combat Multi-Drug Resistance. Int. Acade. Con. Appl. Res. Eng. Sci. Tech., Brussels, Belgium. Diamond Scientific Publication: Lithuania, 134-143.
[32] Rajaraman D., Sundararajan G., Loganath N. K., and Krishnasamy K. (2017) Synthesis, molecular structure, DFT studies and antimicrobial activities of some novel 3-(1-(3,4-dimethoxyphenethyl)-4,5-diphenyl-1H-imidazol-2-yl)-1H-indole derivatives and its molecular docking studies. J. Mol. Struct., 1127 597–610.
[33] Benkli K., Demirayak S., Gundogdu-Karaburun N., Kiraz N., Iscan G., and Ucucu U. (2004) Synthesis and antimicrobial activities of some imidazole substituted indoles. Indian J. Chem. - Sect. B Org. Med. Chem., 43 (1) 174–179.
[34] Naureen S., Ijaz F., Munawar M. A., Asif N., Chaudhry F., Ashraf M., and Khan M. A. (2017) Synthesis of tetrasubstituted imidazoles containing indole and their anti urease and antioxidant activities. J. Chil. Chem. Soc., 62 (3) 3583–3587.
[35] Singh P., and Kumar R. (2015) Synthesis and Evaluation of Antioxidant Activity of 2,4,5-Triaryl Imidazole. Clin. Med. Biochem., Open Access. 01 (1) 2–5.
[36] Kobori T., Hatanaka Y., Ohjta T., and Nakanishi M. (1999) JP patent 11,199,583. Chem. Abstr. (1999) 13,197,623.
[37] Ota T., Nakanishi M., Tomisawa K., and Kobori T. (1999) Word patent WO, 9,935,142. Chem. Abstr. (1999) 13,173,652.
[38] Ohta T., Nakanishi M., Tomizawa K., and Kobori T. (1999) JP patent 11,228,570. Chem. Abstr. (1999) 131,170,350.
[39] Ota T., Nakanishi M., Tomisawa K., and Kobori T. (1999) JP patent 11,228,572. Chem. Abstr. (1999) 131,170,351.
[40] Biradar J. S., Mugali P. S., Sasidhar B. S., and Parveen R. (2008) One-pot synthesis of substituted imidazoles containing indole and their antimicrobial activities. Org. Chem. An Indian J. 4 (4-6) 408–411. Chem Abstr., (2009), 15,237,464.
[41] Fresneda P. M., Molina P., and Sanz M. A. (2001) Microwave-assisted regioselective synthesis of 2,4-disubstituted imidazoles: Nortopsentin D synthesized by minimal effort. Synlett., (2) 218–221.
[42] Velsicol Chemical Corp. (1975) USA NL patent 7317578. Chem. Abstr. (1975) 84,164,785.
[43] Biradar J. S., Somappa S. B., and Mugali P. S. (2012) One-pot, solvent-free synthesis of 2,5-disubstituted indolyl imidazoles by microwave irradiation. Der pharma chemical., 4 (1) 437–441.
[44] Nikoofar K., and Dizgarani S. M. (2017) HNO3@nano SiO2: An efficient catalytic system for the synthesis of multi-substituted imidazoles under solvent-free conditions, J. Saudi Chem. Soc., 21 (7) 787–794.
[45] Papaioannou C. G. (1972) US patent 3673208. Chem. Abstr. (1972) 7,788,507.
[46] Shaterian H. R., Ranjbar M., and Azizi K. (2011) Synthesis of highly substituted imidazoles using Brønsted acidic ionic liquid, triphenyl(propyl-3-sulphonyl)phosphonium toluenesulfonate, as a reusable catalyst. J. Iran. Chem. Soc., 8 (4) 1120–1134.
[47] Molina P., Fresneda P. M., Sanz M. A., Foces-Foces C., and Ramirez de Arellano M. C. (1998) Investigative Studies on the Formation of the Imidazo. Tetrahedron, 54 9623–9638.
[48] Kobori T., Hatanaka Y., Ota T., and Nakanish M.. (1999) JP patent 11,199,582. Chem. Abstr. (1999) 13,197,622.
[49] Pandit S., Bhalerao S. K., Adhav G. L., and Pandit V. U. (2011) Amberlyst A-15: Reusable catalyst for the synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted-1H-imidazoles under MW irradiation. J. of Chemical Sciences, 123 (4) 421–426.
[50] Nirwan N., Pareek C., and Mosalpuri S. R. (2015) Proceeding of India-Japan Bilateral Conference on Applied Science for Advancement of Research and Industrialization (20-27 Sept. 2015, Jaipur, India), BICON, Jaipur, India, 2, 129-132.
[51] Nirwan N., and Pareek C. (2017) Synthesis of 2,4,5-trisubstituted imidazole and 4,5- disubstituted indolylimidazole derivatives by using Amberlyst A-15 as a green, recyclable catalyst. International J. of Scie. Res.in Sci. and Tech, 3 76–82.