How to cite this paper
Kula, K & Łapczuk-Krygier, A. (2018). A DFT computational study on the [3+2] cycloaddition between parent thionitrone and nitroethene.Current Chemistry Letters, 7(1), 27-34.
Refrences
1 Biala G., Pekala K., Boguszewska-Czubara A., Michalak A., Kruk-Slomka M., and Budzynska B. (2017) Behavioral and Biochemical Interaction Between Nicotine and Chronic Unpredictable Mild Stress in Mice. Mol. Neurobiol. 54 (2), 904-921.
2 Papke R. L., Zheng G., Horenstein N. A., Dwoskin L. P., and Crooks P. A. (2005) The characterization of a novel rigid nicotine analog with a7-selective nAChR agonist activity and modulation of agonist properties by boron inclusion. Bioorganic Med. Chem. Lett. 15 (17) 3874-3880.
3 Bontempi B., Whelan K. T., Risbrough V. B., Lloyd G. K., and Menzaghi F. (2003) Cognitive enhancing properties and tolerability of cholinergic agents in mice: A comparative study of nicotine, donepezil, and SIB-1553A, a subtype-selective ligand for nicotinic acetylcholine receptors. Neuropsychopharmacology 28 (7) 1235-1246.
4 Imad Damaj M., Glassco W., Dukat M., May E. L., Glennon R. A., and Martin B. R. (1996) Pharmacology of novel nicotinic analogs. Drug Dev. Res. 38 (3-4) 177-187.
5 Khurana N., Ishar M. P. S., Gajbhiye A., and Goel R. K. (2011) PASS assisted prediction and pharmacological evaluation of novel nicotinic analogs for nootropic activity in mice. Eur. J. Pharmacol. 662 (1-3) 22-30.
6 Aitha A., Yennam S., Behera M., and Anireddy J. S. (2017) Synthesis of spiroindene-1,3-dione isothiazolines via a cascade michael/1,3-dipolar cycloaddition reaction of 1,3,4-oxathiazol-2-one and 2-arylidene-1,3-indandiones. Tetrahedron Lett. 58 (6) 578-581.
7 Chaudhary P., Sharma K., Sharma A., and Varshney J. (2010) Recent Advances in Pharmacological Activity of Benzothiazole Derivatives. Int. J. Curr. Pharm. Res. 2 (4) 5-11.
8 Tomassi C., Van Nhien A. N., Marco-Contelles J., Balzarini J., Pannecouque C., De Clercq E., Soriano E., and Postel D. (2008) Synthesis, anti-HIV-1 activity, and modeling studies of N-3 Boc TSAO compound. Bioorganic Med. Chem. Lett. 18 (7) 2277-2281.
9 Tomassi C., Nguyen Van Nhien A., Marco-Contelles J., Balzarini J., Pannecouque C., De Clercq E., and Postel D. (2008) Synthesis and anti-HIV1 biological activity of novel 5-ATSAO compounds. Bioorganic Med. Chem. 16 (8) 4733-4741.
10 Sinenko V. O., Slivchuk S. R., and Brovarets V. S. (2018) Lithiation of 2-bromo-4-(1,3-dioxolan-2-yl)-1,3-thiazol. Current Chem. Lett.7 (1) 1-8.
11 Dhananjeyan M. R., Milev Y. P., Kron M. A., and Nair M. G. (2005) Synthesis and activity of substituted anthraquinones against a human filarial parasite, Brugia malayi. J. Med. Chem. 48 (8) 2822-2830.
12 Nair V., Nair S. M., Devipriya S., and Sethumadhavan D. (2006) An efficient synthesis of isothiazolidines via sulfonium ylides formed by the reaction of thietanes and nitrene. Tetrahedron Lett. 47 (7) 1109-1111.
13 Raether W. and Hänel H. (2003) Nitroheterocyclic drugs with broad spectrum activity. Parasitol. Res. 90 (1), 19-39.
14 Kim P., Zhang L., Manjunatha U. H., Singh R., Patel S., Jiricek J., Keller T. H., Boshoff H. I., Barry C. E., and Dowd C. S. (2009) Structure-activity relationships of antitubercular nitroimidazoles.1. Structural features associated with aerobic and anaerobic activities of 4-and 5-nitroimidazoles. J. Med. Chem. 52 (5) 1317-1328.
15 Boguszewska-Czubara A., Łapczuk-Krygier A., Rykała K., Biernasiuk A., Wnorowski A., Popiołlek L., Maziarka A., Hordyjewska A., and Jasiński R. (2016) Novel synthesis scheme and in vitro antimicrobial evaluation of a panel of (E)-2-aryl-1-cyano-1-nitroethenes. J. Enzyme Inhib. Med. Chem. 31 900-907.
16 Dąbrowska-Maś E. and Raś W. (2017) Metronidazole citrate ester as the new prodrug of metronidazole. Current Chem. Lett. 6 167-176.
17 Perekalin V. V., (1994) Nitroalkenes: conjugated nitro compounds. Wiley, New York.
18 Corey E. J. and Estreicher H. (1978) A New Synthesis of Conjugated Nitro Cyclo Olefins, Unusually Versatile Synthetic Intermediates. J. Am. Chem. Soc. 100 (19) 6294-6295.
19 Barrett A. G. M. (1991) Heterosubstituted nitroalkenes in synthesis. Chem. Soc. Rev. 20 (1) 95.
20 Ballini R. and Bosica G. (1994) Chemoselective Conversion of Conjugated Nitroalkenes into Ketones by Sodium Borohydride-Hydrogen Peroxide: A New Synthesis of 4-Oxoalkanoic Acids, Dihydrojasmone and (±)- exo-Brevicomin. Synthesis (Stuttg). 7 723-726.
21 Mlostoń G., Leśniak S. X., Linden A., and Roesky H. W. (2000) Ambiguous reactivity of a fluorinated thiocarbonyl S-imide; unprecedented rearrangement under FVP conditions. Tetrahedron 56 (25) 4231-4238.
22 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V, Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao, O. Nakai H., Vreven T., Throssell K., Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov J. A., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., and Fox D. J. (2016) Gaussian 16, Revision A.03. Gaussian Inc., Wallingford CT.
23 Jasiński R. (2013) Competition between the one-step and two-step, zwitterionic mechanisms in the [2+3] cycloaddition of gem-dinitroethene with (Z)-C,N-diphenylnitrone: A DFT computational study. Tetrahedron 69 (2) 927-932.
24 Jasiński R., Ziółkowska M., Demchuk O. M., and Maziarka A. (2014) Regio- and stereoselectivity of polar [2+3] cycloaddition reactions between (Z)-C-(3,4,5-trimethoxyphenyl)-N-methylnitrone and selected (E)-2-substituted nitroethenes. Cent. Eur. J. Chem. 12 (5) 586-593.
25 Jasiński R. (2009) Regio- and stereoselectivity of [2+3]cycloaddition of nitroethene to (Z)-N-aryl-C-phenylnitrones. Collect. Czechoslov. Chem. Commun. 74 (9) 1341-1349.
26 Jasiński R., Kula K., Kącka A., and Mirosław B. (2017) Unexpected course of reaction between (E)-2-aryl-1-cyano-1-nitroethenes and diazafluorene: why is there no 1,3-dipolar cycloaddition? Monatsh. Chem. 148 (5) 909-915.
27 Jasiński R. (2015) A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett. 56 (3) 532-535.
28 Jasiński R., Żmigrodzka M., Dresler E., and Kula K. (2017) A Full Regioselective and Stereoselective Synthesis of 4-Nitroisoxazolidines via Stepwise [3+2] Cycloaddition Reactions between (Z)-C-(9-Anthryl)-N-arylnitrones and (E)-3,3,3-Trichloro-1-nitroprop-1-ene: Comprehensive Experimental and Theoretical Study. J. Heterocycl. Chem. 54 3314-3320.
29 Jasiński R., Dresler E., Mikulska M., and Polewski D. (2016) Cycloadditions of 1-halo-1-nitroethenes with (Z)-C-(3,4,5-trimethoxyphenyl )-N-methyl-nitrone as regio- and stereocontrolled source of novel bioactive compounds: preliminary studies. Current Chem. Lett. 5 (3) 123-128.
2 Papke R. L., Zheng G., Horenstein N. A., Dwoskin L. P., and Crooks P. A. (2005) The characterization of a novel rigid nicotine analog with a7-selective nAChR agonist activity and modulation of agonist properties by boron inclusion. Bioorganic Med. Chem. Lett. 15 (17) 3874-3880.
3 Bontempi B., Whelan K. T., Risbrough V. B., Lloyd G. K., and Menzaghi F. (2003) Cognitive enhancing properties and tolerability of cholinergic agents in mice: A comparative study of nicotine, donepezil, and SIB-1553A, a subtype-selective ligand for nicotinic acetylcholine receptors. Neuropsychopharmacology 28 (7) 1235-1246.
4 Imad Damaj M., Glassco W., Dukat M., May E. L., Glennon R. A., and Martin B. R. (1996) Pharmacology of novel nicotinic analogs. Drug Dev. Res. 38 (3-4) 177-187.
5 Khurana N., Ishar M. P. S., Gajbhiye A., and Goel R. K. (2011) PASS assisted prediction and pharmacological evaluation of novel nicotinic analogs for nootropic activity in mice. Eur. J. Pharmacol. 662 (1-3) 22-30.
6 Aitha A., Yennam S., Behera M., and Anireddy J. S. (2017) Synthesis of spiroindene-1,3-dione isothiazolines via a cascade michael/1,3-dipolar cycloaddition reaction of 1,3,4-oxathiazol-2-one and 2-arylidene-1,3-indandiones. Tetrahedron Lett. 58 (6) 578-581.
7 Chaudhary P., Sharma K., Sharma A., and Varshney J. (2010) Recent Advances in Pharmacological Activity of Benzothiazole Derivatives. Int. J. Curr. Pharm. Res. 2 (4) 5-11.
8 Tomassi C., Van Nhien A. N., Marco-Contelles J., Balzarini J., Pannecouque C., De Clercq E., Soriano E., and Postel D. (2008) Synthesis, anti-HIV-1 activity, and modeling studies of N-3 Boc TSAO compound. Bioorganic Med. Chem. Lett. 18 (7) 2277-2281.
9 Tomassi C., Nguyen Van Nhien A., Marco-Contelles J., Balzarini J., Pannecouque C., De Clercq E., and Postel D. (2008) Synthesis and anti-HIV1 biological activity of novel 5-ATSAO compounds. Bioorganic Med. Chem. 16 (8) 4733-4741.
10 Sinenko V. O., Slivchuk S. R., and Brovarets V. S. (2018) Lithiation of 2-bromo-4-(1,3-dioxolan-2-yl)-1,3-thiazol. Current Chem. Lett.7 (1) 1-8.
11 Dhananjeyan M. R., Milev Y. P., Kron M. A., and Nair M. G. (2005) Synthesis and activity of substituted anthraquinones against a human filarial parasite, Brugia malayi. J. Med. Chem. 48 (8) 2822-2830.
12 Nair V., Nair S. M., Devipriya S., and Sethumadhavan D. (2006) An efficient synthesis of isothiazolidines via sulfonium ylides formed by the reaction of thietanes and nitrene. Tetrahedron Lett. 47 (7) 1109-1111.
13 Raether W. and Hänel H. (2003) Nitroheterocyclic drugs with broad spectrum activity. Parasitol. Res. 90 (1), 19-39.
14 Kim P., Zhang L., Manjunatha U. H., Singh R., Patel S., Jiricek J., Keller T. H., Boshoff H. I., Barry C. E., and Dowd C. S. (2009) Structure-activity relationships of antitubercular nitroimidazoles.1. Structural features associated with aerobic and anaerobic activities of 4-and 5-nitroimidazoles. J. Med. Chem. 52 (5) 1317-1328.
15 Boguszewska-Czubara A., Łapczuk-Krygier A., Rykała K., Biernasiuk A., Wnorowski A., Popiołlek L., Maziarka A., Hordyjewska A., and Jasiński R. (2016) Novel synthesis scheme and in vitro antimicrobial evaluation of a panel of (E)-2-aryl-1-cyano-1-nitroethenes. J. Enzyme Inhib. Med. Chem. 31 900-907.
16 Dąbrowska-Maś E. and Raś W. (2017) Metronidazole citrate ester as the new prodrug of metronidazole. Current Chem. Lett. 6 167-176.
17 Perekalin V. V., (1994) Nitroalkenes: conjugated nitro compounds. Wiley, New York.
18 Corey E. J. and Estreicher H. (1978) A New Synthesis of Conjugated Nitro Cyclo Olefins, Unusually Versatile Synthetic Intermediates. J. Am. Chem. Soc. 100 (19) 6294-6295.
19 Barrett A. G. M. (1991) Heterosubstituted nitroalkenes in synthesis. Chem. Soc. Rev. 20 (1) 95.
20 Ballini R. and Bosica G. (1994) Chemoselective Conversion of Conjugated Nitroalkenes into Ketones by Sodium Borohydride-Hydrogen Peroxide: A New Synthesis of 4-Oxoalkanoic Acids, Dihydrojasmone and (±)- exo-Brevicomin. Synthesis (Stuttg). 7 723-726.
21 Mlostoń G., Leśniak S. X., Linden A., and Roesky H. W. (2000) Ambiguous reactivity of a fluorinated thiocarbonyl S-imide; unprecedented rearrangement under FVP conditions. Tetrahedron 56 (25) 4231-4238.
22 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V, Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao, O. Nakai H., Vreven T., Throssell K., Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov J. A., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., and Fox D. J. (2016) Gaussian 16, Revision A.03. Gaussian Inc., Wallingford CT.
23 Jasiński R. (2013) Competition between the one-step and two-step, zwitterionic mechanisms in the [2+3] cycloaddition of gem-dinitroethene with (Z)-C,N-diphenylnitrone: A DFT computational study. Tetrahedron 69 (2) 927-932.
24 Jasiński R., Ziółkowska M., Demchuk O. M., and Maziarka A. (2014) Regio- and stereoselectivity of polar [2+3] cycloaddition reactions between (Z)-C-(3,4,5-trimethoxyphenyl)-N-methylnitrone and selected (E)-2-substituted nitroethenes. Cent. Eur. J. Chem. 12 (5) 586-593.
25 Jasiński R. (2009) Regio- and stereoselectivity of [2+3]cycloaddition of nitroethene to (Z)-N-aryl-C-phenylnitrones. Collect. Czechoslov. Chem. Commun. 74 (9) 1341-1349.
26 Jasiński R., Kula K., Kącka A., and Mirosław B. (2017) Unexpected course of reaction between (E)-2-aryl-1-cyano-1-nitroethenes and diazafluorene: why is there no 1,3-dipolar cycloaddition? Monatsh. Chem. 148 (5) 909-915.
27 Jasiński R. (2015) A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett. 56 (3) 532-535.
28 Jasiński R., Żmigrodzka M., Dresler E., and Kula K. (2017) A Full Regioselective and Stereoselective Synthesis of 4-Nitroisoxazolidines via Stepwise [3+2] Cycloaddition Reactions between (Z)-C-(9-Anthryl)-N-arylnitrones and (E)-3,3,3-Trichloro-1-nitroprop-1-ene: Comprehensive Experimental and Theoretical Study. J. Heterocycl. Chem. 54 3314-3320.
29 Jasiński R., Dresler E., Mikulska M., and Polewski D. (2016) Cycloadditions of 1-halo-1-nitroethenes with (Z)-C-(3,4,5-trimethoxyphenyl )-N-methyl-nitrone as regio- and stereocontrolled source of novel bioactive compounds: preliminary studies. Current Chem. Lett. 5 (3) 123-128.