How to cite this paper
Kącka, A & Jasiński, R. (2017). DFT study of the decomposition reactions of nitroethyl benzoates catalyzed by the 1,3-dimethylimidazolium cation.Current Chemistry Letters, 6(1), 15-22.
Refrences
1 Corey E. J., and Estreicher H. (1978) A new synthesis of conjugated nitro cyclo olefins, unusually versatile synthetic intermediates. J. Am. Chem. Soc., 100 (19) 6294-6295.
2 Varma R. S., and Kabalka G. W. (1986) Nitroalkenes in the synthesis of heterocyclic compounds. Heterocycles, 24 (9) 2645-2677.
3 Barrett A. G. M. (1991) Heterosubstituted nitroalkenes in synthesis. Chem. Soc. Rev., 20 (1) 95-127.
4 Tso H. H., Gilbert B. A., and Hwu J. R. (1993) Novel double functional group transformation: ‘one-flask’ conversion of 1-nitrocycloalkenes to terminally unsaturated nitriles. J. Chem. Soc., Chem. Commun., 18 669-670.
5 Perekalin V. V. (1994) Nitroalkenes: conjugated nitro compounds, Wiley, New York.
6 Berner O. M., Tedeschi L., and Enders D. (2002) Asymmetric Michael additions to nitroalkenes. Eur. J. Org. Chem., 2002 (12) 1877-1894.
7 Kranse N., and Hoffmann-Röder A. (2001) Recent advances in catalytic enantioselective Michael additions. Synthesis, 2001 (2) 171-196.
8 Tietze L. F., and Kettschau G. (1997) Hetero Diels-Alder reactions in organic synthesis, in: Metz P. (Eds) Stereoselective Heterocyclic Synthesis I. Springer Berlin Heidelberg, Berlin, 1-120.
9 Kabalka G. W., and Varma R. S. (1987) Syntheses and selected reductions of conjugated nitroalkenes – a review. Org. Prep. Proc. Int., 19 (4-5) 283-328.
10 Blades K., Butt A. H., Cockerill G. S., Easterfield H. J., Lequeux T. P., and Percy J. M. (1997) Phosphorus(III) ligands with fluorous ponytails. J. Chem. Soc., Perkin Trans. 1, 1997 (24) 3609-3612.
11 Hoashi Y., Yabuta T., and Takemoto Y. (2004) Bifunctional thiourea—catalyzed enantioselective double Michael reaction of γ,δ-unsaturated β-ketoester to nitroalkene: asymmetric synthesis of (-)-epibatidine. Tetrahedron Lett., 45 (50) 9185-9188.
12 Latif N., Asaad F. M., and Hosni H. (1986) N-Unsubstituted (carbamoyloxy)nitrostyrenes: a new series of aryl-β-nitroalkenes with fungicidal properties. Liebigs Ann. Chem., 1987 (6) 495-498.
13 Zee-Cheng K.-Y., and Cheng C.-C. (1969) Experimental tumor inhibitors. Antitumor activity of esters of ω-aryl-ψ-nitro-ψ-alken-1-ol and related compounds. J. Med. Chem., 12 (1) 157-161.
14 Dadwal M., Mohan R., Panda D., Mobin S. M., and Namboothiri I. N. N. (2006) The Morita-Baylis-Hilman adducts of β-aryl nitroethylenes with other activated alkenes: synthesis and anticancer activity studies. Chem. Commun., 2006 (3) 338-340.
15 Brian P. W., Jamieson M., and McGowan J. C. (1948) Toxicity of Sulphydryl Compounds to Seeds. Nature, 162 (13) 780.
16 Bocobo F. C., Curtis A.C., Block W. D., Harrell E. R., Evans E. E., and Haines R. F. (1956) Evaluation of nitrostyrenes as antifungal agents. I. In vitro studies. Antibiot. Chemother., 6 (6) 385-390.
17 Hwu J. R., Chen K.-L., and Ananthan S. J. (1994) A new method for nitration of alkenes to α,β-unsaturated nitroalkenes. J. Chem. Soc., Chem. Commun., 12 1425-1426.
18 Kunai A., Yanagi Y., and Sasaki K. (1983) A convenient preparation of conjugated nitro olefins by electrochemical method. Tetrahedron Lett., 24 (41) 4443-4444.
19 Sy W. W., and By A. W. (1985) Nitration of substituted styrenes aith nitryl iodide. Tetrahedron Lett., 26 (9) 1193-1196.
20 Jew S. S., Kim H. D., Cho Y. S., Cook C. H. (1986) A practical preparations of conjugated nitroalkenes. Chem. Lett., 15 (10) 1747-1748.
21 Jasiński R., Ziółkowska M., Demchuk O. M., and Maziarka A. (2014) Regio- and stereoselectivity of polar [2+3] cycloaddition reactions between (Z)-C-(3,4,5-trimethoxyphenyl)-N-methylnitrone and selected (E)-2-sybstituted nitroethenes. Central. Eur. J. Chem., 12 (5) 586-593.
22 Jasiński R. (2015) A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett., 56 (3) 532-535.
23 Jasiński R. (2014) Searching for zwitterionic intermediates in Hetero Diels-Alder reactions between methyl a,p-dinitrocinnamate and vinyl-alkyl ethers. Comput. Theor. Chem., 1046 (15) 93-98.
24 Jasiński R. (2009) Regio- and stereoselectivity of [2+3]cycloaddition of nitroethene to (Z)- N-aryl-C-phenylnitrones. Coll. Czech. Chem. Commun., 74 (9) 1341-1349.
25 Jasiński R. (2015) Nitroacetylene as dipolarophile in [2 + 3] cycloaddition reactions with allenyl-type three-atom components: DFT computational study. Monatsh. Chem., 146 (4) 591–599.
26 Jasiński R. (2014) Molecular mechanism of thermal decomposition of fluoronitroazoxy compounds: DFT computational study. J. Fluor. Chem., 160 29-33.
27 Jasiński R., and Kącka A. (2015) A polar nature of benzoic acids extrusion from nitroalkyl benzoates: DFT mechanistic study. J. Mol. Mod., 21 (3) 59-65.
28 Kącka A., and Jasiński R. (2016) A density functional theory mechanistic study of thermal decomposition reactions of nitroethyl carboxylates: undermine of “pericyclic” insight. Heteroatom Chem., 27 (5) 279-289.
29 Jasiński R. (2016) First example of stepwise, zwitterionic mechanism for bicycle[2.2.1]hept-5-ene (norbornene) formation process catalyzed by the 1-butyl-3-methylimidazolium cations. Monatsh. Chem., 147 (7) 1207-1213.
30 Jasiński R. (2015) A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalyzed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett., 56 (3) 532-535.
31 Feng D., Li L., Yang F., Tan W., Zhao G., Zou H., Xian M., and Zhang Y. (2011) Separation of ionic liquid [Mmim][DMP] and glucose from enzymatic hydrolysis mixture of cellulose using alumina column chromatography. Appl. Microbiol. Biotechnol., 91 (2) 399-405.
32 Park S., and Kazlauskas R. J. (2003) Biocatalysis in ionic liquids - advantages beyond green technology. Curr. Opin. Biotechnol., 14 (4) 432-437.
33 Dommert F., and Holm Ch. (2013) Refining classical force fields for ionic liquids: theory and application to [MMIM][Cl]. Phys. Chem. Chem. Phys., 15 (6) 2037-2049.
34 Kragl U., Eckstein M., and Kaftzik N. (2002) Enzyme catalysis in ionic liquids. Curr. Opin. Biotechnol., 13 (6) 565-571.
35 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T. J., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima Y., Honda O., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas M. C., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., and Pople J. A. (2009) Gaussian 09 rev A.1 Gaussian Inc. Wallingford CT.
36 Stephens P., Devlin F. J., Chabalowski C. F., and Frisch M. J. (1994) Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem., 98 (45) 11623-11627.
37 Becke A. D. (1993) Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98 (7) 5648-5658.
38 Lee C., Yang W., and Parr R. G. (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37 (2) 785-789.
39 Fukui K. (1970) Formulation of the reaction coordinate. J. Phys. Chem., 74 (23) 4161-4163.
40 Cossi M., Rega N., Scalmani G., and Barone V. (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comp. Chem., 24 (6) 669-681.
41 Wasserscheid P., and Welton T. (2007) Ionic Liquid in Synthesis, 2nd Ed, Wiley-VCH Verlag GmbH, Weinheim.
42 Domingo L. R. (2014) A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv., 4 (61) 32415-32428.
43 Berski S., Andres J., Silvi B., and Domingo L. R. (2003) The Joint Use of Catastrophe Theory and Electron Localization Function to Characterize Molecular Mechanisms. A Density Functional Study of the Diels−Alder Reaction between Ethylene and 1,3-Butadiene. J. Phys. Chem., 107 (31) 6014-6024.
44 Jasiński R. (2015) A new mechanistic insight on beta-lactam systems formation from 5-nitroisoxazolidines. RSC Adv., 5 (62) 50070-50072.
45 Szczepanek A., Jasińska E., Kącka A., and Jasiński R. (2015) An experimental and quantumchemical study of [2+3] cycloaddition between (Z)-C-(m,m,p-trimethoxyphenyl)-N-(p-methyphenyl)-nitrone and (E)-3,3,3-trichloro-1-nitroprop-1-ene: mechanistic aspects. Curr. Chem. Lett., 4 (1) 33-44
46 Domingo L. R., Perez P., and Contreras R. (2004) Reactivity of the carbon–carbon double bond towards nucleophilic additions. A DFT analysis. Tetrahedron, 60 (31) 6585-6591.
47 Domingo L. R., Arno M., and Andres J. (1999) Influence of reactant polarity on the course of the inverse-electron-demand Diels−Alder reaction. A DFT study of regio- and stereoselectivity, presence of Lewis Acid catalyst, and inclusion of solvent effects in the reaction between nitroethene and substituted ethenes. J. Org. Chem., 64 (16) 5867-5875.
48 Domingo L. R., Jose Aurell M., Kneeteman M. N., and Mancini P. M. (2008) Mechanistic details of the domino reaction of nitronaphthalenes with the electron-rich dienes. A DFT study. J. Mol. Struct., 853 (1-3) 68-76.
2 Varma R. S., and Kabalka G. W. (1986) Nitroalkenes in the synthesis of heterocyclic compounds. Heterocycles, 24 (9) 2645-2677.
3 Barrett A. G. M. (1991) Heterosubstituted nitroalkenes in synthesis. Chem. Soc. Rev., 20 (1) 95-127.
4 Tso H. H., Gilbert B. A., and Hwu J. R. (1993) Novel double functional group transformation: ‘one-flask’ conversion of 1-nitrocycloalkenes to terminally unsaturated nitriles. J. Chem. Soc., Chem. Commun., 18 669-670.
5 Perekalin V. V. (1994) Nitroalkenes: conjugated nitro compounds, Wiley, New York.
6 Berner O. M., Tedeschi L., and Enders D. (2002) Asymmetric Michael additions to nitroalkenes. Eur. J. Org. Chem., 2002 (12) 1877-1894.
7 Kranse N., and Hoffmann-Röder A. (2001) Recent advances in catalytic enantioselective Michael additions. Synthesis, 2001 (2) 171-196.
8 Tietze L. F., and Kettschau G. (1997) Hetero Diels-Alder reactions in organic synthesis, in: Metz P. (Eds) Stereoselective Heterocyclic Synthesis I. Springer Berlin Heidelberg, Berlin, 1-120.
9 Kabalka G. W., and Varma R. S. (1987) Syntheses and selected reductions of conjugated nitroalkenes – a review. Org. Prep. Proc. Int., 19 (4-5) 283-328.
10 Blades K., Butt A. H., Cockerill G. S., Easterfield H. J., Lequeux T. P., and Percy J. M. (1997) Phosphorus(III) ligands with fluorous ponytails. J. Chem. Soc., Perkin Trans. 1, 1997 (24) 3609-3612.
11 Hoashi Y., Yabuta T., and Takemoto Y. (2004) Bifunctional thiourea—catalyzed enantioselective double Michael reaction of γ,δ-unsaturated β-ketoester to nitroalkene: asymmetric synthesis of (-)-epibatidine. Tetrahedron Lett., 45 (50) 9185-9188.
12 Latif N., Asaad F. M., and Hosni H. (1986) N-Unsubstituted (carbamoyloxy)nitrostyrenes: a new series of aryl-β-nitroalkenes with fungicidal properties. Liebigs Ann. Chem., 1987 (6) 495-498.
13 Zee-Cheng K.-Y., and Cheng C.-C. (1969) Experimental tumor inhibitors. Antitumor activity of esters of ω-aryl-ψ-nitro-ψ-alken-1-ol and related compounds. J. Med. Chem., 12 (1) 157-161.
14 Dadwal M., Mohan R., Panda D., Mobin S. M., and Namboothiri I. N. N. (2006) The Morita-Baylis-Hilman adducts of β-aryl nitroethylenes with other activated alkenes: synthesis and anticancer activity studies. Chem. Commun., 2006 (3) 338-340.
15 Brian P. W., Jamieson M., and McGowan J. C. (1948) Toxicity of Sulphydryl Compounds to Seeds. Nature, 162 (13) 780.
16 Bocobo F. C., Curtis A.C., Block W. D., Harrell E. R., Evans E. E., and Haines R. F. (1956) Evaluation of nitrostyrenes as antifungal agents. I. In vitro studies. Antibiot. Chemother., 6 (6) 385-390.
17 Hwu J. R., Chen K.-L., and Ananthan S. J. (1994) A new method for nitration of alkenes to α,β-unsaturated nitroalkenes. J. Chem. Soc., Chem. Commun., 12 1425-1426.
18 Kunai A., Yanagi Y., and Sasaki K. (1983) A convenient preparation of conjugated nitro olefins by electrochemical method. Tetrahedron Lett., 24 (41) 4443-4444.
19 Sy W. W., and By A. W. (1985) Nitration of substituted styrenes aith nitryl iodide. Tetrahedron Lett., 26 (9) 1193-1196.
20 Jew S. S., Kim H. D., Cho Y. S., Cook C. H. (1986) A practical preparations of conjugated nitroalkenes. Chem. Lett., 15 (10) 1747-1748.
21 Jasiński R., Ziółkowska M., Demchuk O. M., and Maziarka A. (2014) Regio- and stereoselectivity of polar [2+3] cycloaddition reactions between (Z)-C-(3,4,5-trimethoxyphenyl)-N-methylnitrone and selected (E)-2-sybstituted nitroethenes. Central. Eur. J. Chem., 12 (5) 586-593.
22 Jasiński R. (2015) A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett., 56 (3) 532-535.
23 Jasiński R. (2014) Searching for zwitterionic intermediates in Hetero Diels-Alder reactions between methyl a,p-dinitrocinnamate and vinyl-alkyl ethers. Comput. Theor. Chem., 1046 (15) 93-98.
24 Jasiński R. (2009) Regio- and stereoselectivity of [2+3]cycloaddition of nitroethene to (Z)- N-aryl-C-phenylnitrones. Coll. Czech. Chem. Commun., 74 (9) 1341-1349.
25 Jasiński R. (2015) Nitroacetylene as dipolarophile in [2 + 3] cycloaddition reactions with allenyl-type three-atom components: DFT computational study. Monatsh. Chem., 146 (4) 591–599.
26 Jasiński R. (2014) Molecular mechanism of thermal decomposition of fluoronitroazoxy compounds: DFT computational study. J. Fluor. Chem., 160 29-33.
27 Jasiński R., and Kącka A. (2015) A polar nature of benzoic acids extrusion from nitroalkyl benzoates: DFT mechanistic study. J. Mol. Mod., 21 (3) 59-65.
28 Kącka A., and Jasiński R. (2016) A density functional theory mechanistic study of thermal decomposition reactions of nitroethyl carboxylates: undermine of “pericyclic” insight. Heteroatom Chem., 27 (5) 279-289.
29 Jasiński R. (2016) First example of stepwise, zwitterionic mechanism for bicycle[2.2.1]hept-5-ene (norbornene) formation process catalyzed by the 1-butyl-3-methylimidazolium cations. Monatsh. Chem., 147 (7) 1207-1213.
30 Jasiński R. (2015) A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalyzed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett., 56 (3) 532-535.
31 Feng D., Li L., Yang F., Tan W., Zhao G., Zou H., Xian M., and Zhang Y. (2011) Separation of ionic liquid [Mmim][DMP] and glucose from enzymatic hydrolysis mixture of cellulose using alumina column chromatography. Appl. Microbiol. Biotechnol., 91 (2) 399-405.
32 Park S., and Kazlauskas R. J. (2003) Biocatalysis in ionic liquids - advantages beyond green technology. Curr. Opin. Biotechnol., 14 (4) 432-437.
33 Dommert F., and Holm Ch. (2013) Refining classical force fields for ionic liquids: theory and application to [MMIM][Cl]. Phys. Chem. Chem. Phys., 15 (6) 2037-2049.
34 Kragl U., Eckstein M., and Kaftzik N. (2002) Enzyme catalysis in ionic liquids. Curr. Opin. Biotechnol., 13 (6) 565-571.
35 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T. J., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima Y., Honda O., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas M. C., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., and Pople J. A. (2009) Gaussian 09 rev A.1 Gaussian Inc. Wallingford CT.
36 Stephens P., Devlin F. J., Chabalowski C. F., and Frisch M. J. (1994) Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem., 98 (45) 11623-11627.
37 Becke A. D. (1993) Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98 (7) 5648-5658.
38 Lee C., Yang W., and Parr R. G. (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37 (2) 785-789.
39 Fukui K. (1970) Formulation of the reaction coordinate. J. Phys. Chem., 74 (23) 4161-4163.
40 Cossi M., Rega N., Scalmani G., and Barone V. (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comp. Chem., 24 (6) 669-681.
41 Wasserscheid P., and Welton T. (2007) Ionic Liquid in Synthesis, 2nd Ed, Wiley-VCH Verlag GmbH, Weinheim.
42 Domingo L. R. (2014) A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv., 4 (61) 32415-32428.
43 Berski S., Andres J., Silvi B., and Domingo L. R. (2003) The Joint Use of Catastrophe Theory and Electron Localization Function to Characterize Molecular Mechanisms. A Density Functional Study of the Diels−Alder Reaction between Ethylene and 1,3-Butadiene. J. Phys. Chem., 107 (31) 6014-6024.
44 Jasiński R. (2015) A new mechanistic insight on beta-lactam systems formation from 5-nitroisoxazolidines. RSC Adv., 5 (62) 50070-50072.
45 Szczepanek A., Jasińska E., Kącka A., and Jasiński R. (2015) An experimental and quantumchemical study of [2+3] cycloaddition between (Z)-C-(m,m,p-trimethoxyphenyl)-N-(p-methyphenyl)-nitrone and (E)-3,3,3-trichloro-1-nitroprop-1-ene: mechanistic aspects. Curr. Chem. Lett., 4 (1) 33-44
46 Domingo L. R., Perez P., and Contreras R. (2004) Reactivity of the carbon–carbon double bond towards nucleophilic additions. A DFT analysis. Tetrahedron, 60 (31) 6585-6591.
47 Domingo L. R., Arno M., and Andres J. (1999) Influence of reactant polarity on the course of the inverse-electron-demand Diels−Alder reaction. A DFT study of regio- and stereoselectivity, presence of Lewis Acid catalyst, and inclusion of solvent effects in the reaction between nitroethene and substituted ethenes. J. Org. Chem., 64 (16) 5867-5875.
48 Domingo L. R., Jose Aurell M., Kneeteman M. N., and Mancini P. M. (2008) Mechanistic details of the domino reaction of nitronaphthalenes with the electron-rich dienes. A DFT study. J. Mol. Struct., 853 (1-3) 68-76.