Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Journal of Project Management » A hybrid genetic algorithm for the hybrid flow shop scheduling problem with machine blocking and sequence-dependent setup times

Journals

  • IJIEC (678)
  • MSL (2637)
  • DSL (606)
  • CCL (460)
  • USCM (1087)
  • ESM (391)
  • AC (543)
  • JPM (215)
  • IJDS (802)
  • JFS (81)

JPM Volumes

    • Volume 1 (8)
      • Issue 1 (5)
      • Issue 2 (3)
    • Volume 2 (13)
      • Issue 1 (4)
      • Issue 2 (3)
      • Issue 3 (3)
      • Issue 4 (3)
    • Volume 3 (17)
      • Issue 1 (4)
      • Issue 2 (5)
      • Issue 3 (4)
      • Issue 4 (4)
    • Volume 4 (24)
      • Issue 1 (4)
      • Issue 2 (8)
      • Issue 3 (8)
      • Issue 4 (4)
    • Volume 5 (20)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (5)
    • Volume 6 (20)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (5)
    • Volume 7 (21)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (6)
    • Volume 8 (21)
      • Issue 1 (6)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (5)
    • Volume 9 (35)
      • Issue 1 (6)
      • Issue 2 (5)
      • Issue 3 (9)
      • Issue 4 (15)
    • Volume 10 (36)
      • Issue 1 (15)
      • Issue 2 (21)

Keywords

Supply chain management(156)
Jordan(154)
Vietnam(147)
Customer satisfaction(119)
Performance(108)
Supply chain(105)
Service quality(95)
Tehran Stock Exchange(94)
Competitive advantage(91)
SMEs(85)
optimization(81)
Financial performance(81)
Job satisfaction(78)
Factor analysis(78)
Trust(77)
Knowledge Management(76)
Genetic Algorithm(74)
TOPSIS(73)
Social media(72)
Organizational performance(71)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(52)
Endri Endri(44)
Muhammad Alshurideh(40)
Hotlan Siagian(36)
Muhammad Turki Alshurideh(35)
Jumadil Saputra(35)
Barween Al Kurdi(32)
Hassan Ghodrati(31)
Mohammad Khodaei Valahzaghard(30)
Ahmad Makui(30)
Dmaithan Almajali(30)
Ni Nyoman Kerti Yasa(29)
Basrowi Basrowi(29)
Shankar Chakraborty(29)
Prasadja Ricardianto(28)
Sulieman Ibraheem Shelash Al-Hawary(27)
Ali Harounabadi(26)
Haitham M. Alzoubi(26)


» Show all authors

Countries

Iran(2149)
Indonesia(1208)
India(762)
Jordan(726)
Vietnam(489)
Malaysia(415)
Saudi Arabia(400)
United Arab Emirates(209)
Thailand(142)
China(130)
United States(100)
Turkey(97)
Ukraine(93)
Egypt(86)
Canada(83)
Pakistan(81)
Nigeria(72)
Peru(70)
United Kingdom(69)
Taiwan(65)


» Show all countries

Journal of Project Management

ISSN 2371-8374 (Online) - ISSN 2371-8366 (Print)
Quarterly Publication
Volume 7 Issue 4 pp. 201-216 , 2022

A hybrid genetic algorithm for the hybrid flow shop scheduling problem with machine blocking and sequence-dependent setup times Pages 201-216 Right click to download the paper Download PDF

Authors: Ingrid Simões Ferreira Maciel, Bruno de Athayde Prata, Marcelo Seido Nagano, Levi Ribeiro de Abreu

DOI: 10.5267/j.jpm.2022.5.002

Keywords: Production Sequencing, Makespan, Evolutionary Algorithms, Mixed-Integer Linear Programming

Abstract: This study contributes to the hybrid flow shop due to a lack of consideration of characteristics existing in real-world problems. Prior studies are neglecting identical machines, explicit and sequence-dependent setup times, and machine blocking. We propose a hybrid genetic algorithm to solve the problem. Furthermore, we also propose a mixed-integer linear programming formulation. We note a predominance of the mathematical model for small instances, with five jobs and three machines because of how fast there is convergence. The objective function adopted is to minimize the makespan, and relative deviation is used as a performance criterion. Our proposal incorporates two metaheuristics in this process: a genetic algorithm to generate sequences (the flow shop subproblem) and a GRASP to allocate the jobs in the machines (the parallel machines subproblem). The extensive computational experience carried out shows that the proposed hybrid genetic algorithm is a promising procedure to solve large-sized instances.

How to cite this paper
Maciel, I., Prata, B., Nagano, M & Abreu, L. (2022). A hybrid genetic algorithm for the hybrid flow shop scheduling problem with machine blocking and sequence-dependent setup times.Journal of Project Management, 7(4), 201-216.

Refrences
Abreu, L. R., Cunha, J. O., Prata, B. A., & Framinan, J. M. (2020). A genetic algorithm for scheduling open shops with sequence-dependent setup times. Computers & Operations Research, 113, 104793.
Allahverdi, A., Ng, C. T., Cheng, T. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup times or costs. European journal of operational research, 187(3), 985-1032. https,//doi.org/10.1016/j.ejor.2006.06.060.
Behnamian, J., Fatemi Ghomi, S. M. T., & Zandieh, M. (2012). Hybrid flowshop scheduling with sequence‐dependent setup times by hybridizing max–min ant system, simulated annealing and variable neighbourhood search. Expert systems, 29(2), 156-169. https,//doi.org/10.1111/j.1468-0394.2010.00569.x.
Bozorgirad, M. A., & Logendran, R. (2016). A comparison of local search algorithms with population-based algorithms in hybrid flow shop scheduling problems with realistic characteristics. The international journal of advanced manu-facturing technology, 83(5), 1135-1151. https,//doi.org/10.1007/s00170-015-7650-9.
Candan, G., & Yazgan, H. R. (2015). Genetic algorithm parameter optimisation using Taguchi method for a flexible manufacturing system scheduling problem. International Journal of Production Research, 53(3), 897-915.
Chamnanlor, C., Sethanan, K., Gen, M., & Chien, C. F. (2017). Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints. Journal of Intelligent Manufacturing, 28(8), 1915-1931.
Dios, M., Fernandez-Viagas, V., & Framinan, J. M. (2018). Efficient heuristics for the hybrid flow shop scheduling problem with missing operations. Computers & Industrial Engineering, 115, 88-99. https,//doi.org/10.1016/j.cie.2017.10.034.
Ebrahimi, M., Fatemi Ghomi, S. M. T., & Karimi, B. (2014). Hybrid Flow Shop Scheduling with Sequence Dependent Family Setup Time and Uncertain Due Dates. Applied Mathematical Modelling, 38(9), 2490–2504. https,//doi.org/10.1016/j.apm.2013.10.061.
Elmi, A., & Topaloglu, S. (2013). A scheduling problem in blocking hybrid flow shop robotic cells with multiple robots. Computers & operations research, 40(10), 2543-2555. https,//doi.org/10.1016/j.cor.2013.01.024.
Feo, T. A., & Resende, M.G.C. (1995). Greedy Randomized Adaptive Search Procedures. Journal of Global Optimiza-tion, 6(2), 109–33.
Garavito-Hernández, E. A., Peña-Tibaduiza, E., Perez-Figueredo, L. E., & Moratto-Chimenty, E. (2019). A meta-heuristic based on the Imperialist Competitive Algorithm (ICA) for solving Hybrid Flow Shop (HFS) scheduling problem with unrelated parallel machines. Journal of Industrial and Production Engineering, 36(6), 362-370.
Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of operations research, 1(2), 117-129. https,//doi.org/10.1287/moor.1.2.117.
Gholami, M., Zandieh, M., & Alem-Tabriz, A. (2009). Scheduling hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. The International Journal of Advanced Manufacturing Technology, 42(1), 189-201. https,//doi.org/10.1007/s00170-008-1577-3.
Gholami, M., Zandieh, M., & Alem-Tabriz, A. (2009b). Scheduling Hybrid Flow Shop with Sequence-Dependent Setup Times and Machines with Random Breakdowns. The International Journal of Advanced Manufacturing Technology, 42 (1-2), 189–201.
González-Neira, E. M., & Montoya-Torres, J. R. (2017). A GRASP meta-heuristic for the hybrid flowshop scheduling problem. Journal of Decision systems, 26(3), 294-306.
Gupta, J. ND. (1988). Two-Stage, Hybrid Flowshop Scheduling Problem. Journal of the Operational Research Society, 39 (4), 359–64.
Hall, N. G., & Sriskandarajah, C. (1996). A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process. Operations Research, 44(3), 510–25. https,//doi.org/10.1287/opre.44.3.510.
Hidri, L., & Haouari, M. (2011). Bounding strategies for the hybrid flow shop scheduling problem. Applied Mathematics and Computation, 217(21), 8248-8263. https,//doi.org/10.1016/j.amc.2011.02.108.
Kahraman, C., Engin, O., Kaya, I., & Kerim Yilmaz, M. (2008). An application of effective genetic algorithms for solv-ing hybrid flow shop scheduling problems. International Journal of Computational Intelligence Systems, 1(2), 134-147.
Kurdi, M. (2019). Ant colony system with a novel Non-DaemonActions procedure for multiprocessor task scheduling in multistage hybrid flow shop. Swarm and evolutionary computation, 44, 987-1002.
Li, J. Q., & Pan, Q. K. (2015). Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm. Information Sciences, 316, 487-502. https,//doi.org/10.1016/j.ins.2014.10.009.
Liu, C. Y. (1996, December). Scheduling flexible flow shops with sequence-dependent setup effect. In Proceedings of 35th IEEE Conference on Decision and Control (Vol. 2, pp. 1757-1762). IEEE. https,//doi.org/10.1109/70.864235.
Maccarthy, B. L., & Liu, J. (1993). Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. The International Journal of Production Research, 31(1), 59-79.
Misevičius, A., & Kilda, B. (2005). Comparison of crossover operators for the quadratic assignment problem. Infor-mation Technology and Control, 34(2).
Moccellin, J. V., Nagano, M. S., Pitombeira Neto, A. R., & de Athayde Prata, B. (2018). Heuristic algorithms for sched-uling hybrid flow shops with machine blocking and setup times. Journal of the Brazilian Society of Mechanical Sci-ences and Engineering, 40(2), 1-11. https,//doi.org/10.1007/s40430-018-0980-4.
Nagano, M. S., Komesu, A. S., & Miyata, H. H. (2019). An evolutionary clustering search for the total tardiness block-ing flow shop problem. Journal of Intelligent Manufacturing, 30(4), 1843-1857.
Nejati, Mohsen, Iraj Mahdavi, Reza Hassanzadeh, and Nezam Mahdavi-Amiri. (2016). Lot Streaming in a Two-Stage Assembly Hybrid Flow Shop Scheduling Problem with a Work Shift Constraint. Journal of Industrial and Produc-tion Engineering 33 (7), 459–71. https,//doi.org/10.1080/21681015.2015.1126653.
Pan, Q. K., Gao, L., Li, X. Y., & Gao, K. Z. (2017). Effective metaheuristics for scheduling a hybrid flowshop with se-quence-dependent setup times. Applied Mathematics and Computation, 303, 89-112. https,//doi.org/10.1016/j.amc.2017.01.004.
Pessoa, R., Maciel, I., Moccellin, J., Pitombeira-Neto, A., & Prata, B. (2021). Hybrid Flow Shop Scheduling Problem with Machine Blocking, Setup Times and Unrelated Parallel Machines Per Stage. Investigacion Operacional.
de Athayde Prata, B., Rodrigues, C. D., & Framinan, J. M. (2022). A differential evolution algorithm for the customer order scheduling problem with sequence-dependent setup times. Expert Systems with Applications, 189, 116097.
Ramezani, P., Rabiee, M., & Jolai, F. (2015). No-wait flexible flowshop with uniform parallel machines and sequence-dependent setup time: a hybrid meta-heuristic approach. Journal of Intelligent Manufacturing, 26(4), 731-744.
https,//doi.org/10.1007/s10845-013-0830-2.
Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37(8), 1439-1454. https,//doi.org/10.1016/j.cor.2009.11.001.
Ruiz, R., & Maroto, C. (2006). A genetic algorithm for hybrid flowshops with sequence dependent setup times and ma-chine eligibility. European journal of operational research, 169(3), 781-800.
Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European journal of opera-tional research, 205(1), 1-18.
Salvador, M. S. (1973). A solution to a special class of flow shop scheduling problems. In Symposium on the theory of scheduling and its applications (pp. 83-91). Springer, Berlin, Heidelberg.
Shahvari, O., & Logendran, R. (2018). A comparison of two stage-based hybrid algorithms for a batch scheduling prob-lem in hybrid flow shop with learning effect. International Journal of Production Economics, 195, 227-248. https,//doi.org/10.1016/j.ijpe.2017.10.015.
Tang, P. H., & Tseng, M. H. (2013). Adaptive directed mutation for real-coded genetic algorithms. Applied Soft Compu-ting, 13(1), 600-614.
Tate, D. M., & Smith, A. E. (1995). A genetic approach to the quadratic assignment problem. Computers & Operations Research, 22(1), 73-83.
Zandieh, M., Ghomi, S. F., & Husseini, S. M. (2006). An immune algorithm approach to hybrid flow shops scheduling with sequence-dependent setup times. Applied Mathematics and Computation, 180(1), 111-127.
https,//doi.org/10.1016/j.amc.2005.11.136.

  • 17
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Journal of Project Management | Year: 2022 | Volume: 7 | Issue: 4 | Views: 1363 | Reviews: 0

Related Articles:
  • A computational evaluation of constructive heuristics for the parallel bloc ...
  • Solving the permutation flow shop problem with blocking and setup time cons ...
  • Evaluating the performance of constructive heuristics for the blocking flow ...
  • Solving group scheduling problem in no-wait flexible flowshop with random m ...
  • A two-phase fuzzy programming model for a complex bi-objective no-wait flow ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com