How to cite this paper
Sugito, S., Purba, R., Rizkia, S & Ardian, R. (2024). Measurement and analysis mechanical properties of cross-laminated timber (CLT) product: Case study on typical lampung lamina arrangement.Engineering Solid Mechanics, 12(2), 127-132.
Refrences
Alshikh, Z., Trepci, E., & Rodriguez-Ubinas, E. (2023). Sustainable Off-Site Construction in Desert Environments: Zero-Energy Houses as Case Studies. Sustainability, 15(15), 11909. doi:doi.org/10.3390/su151511909
Anthony, C. J., & Ali, M. M. (2023). Structural Design of a Single-Family Residential Dwelling Using Cross-Laminated Timber (CLT). Sustainable Built Environment, Ch. 14. doi:doi.org/10.5772/intechopen.110790
ASTM. (2013). American society for testing materials: Standard test method for strength properties of adhesive bonds in shear by compression loading: ASTM D 905. Annual Book of ASTM Standards, 15. doi:doi.org/10.1520/D0905-08R13
Ba, J., Ji, X., Wang, B., Li, P., Lin, J., Cao, J., & Qi, J. (2022). Microstructure design of C/C composites through electrochemical corrosion for brazing to Nb. Journal of Materials Science & Technology, 104, 33-40. doi:doi.org/10.1016/j.jmst.2021.06.074
Bechert, S., Aldinger, L., Wood, D., Knippers, J., & Menges, A. (2021). Urbach Tower: Integrative structural design of a lightweight structure made of self-shaped curved cross-laminated timber. Structures, 33, 3667-3681. doi:doi.org/10.1016/j.istruc.2021.06.073
Bhandari, S., Riggio, M., Jahedi, S., Fischer, E. C., Muszynski, L., & Luo, Z. (2023). A review of modular cross laminated timber construction: Implications for temporary housing in seismic areas. Journal of Building Engineering, 63, 105485. doi:doi.org/10.1016/j.jobe.2022.105485
Bischoff, E. E. (2006). Three-dimensional packing of items with limited load bearing strength. European Journal of Operational Research, 168(3), 952-966. doi:doi.org/10.1016/j.ejor.2004.04.037
Bos, F., Wolfs, R., Ahmed, Z., & Salet, T. (2016). Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual and Physical Prototyping, 11(3), 209-225. doi:doi.org/10.1080/17452759.2016.1209867
Browning, A., Ortiz, C., & Boyce, M. C. (2013). Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues. Journal of the Mechanical Behavior of Biomedical Materials, 19, 75-86. doi:doi.org/10.1016/j.jmbbm.2012.11.003
Cheng, L., Thomas, A., Glancey, J. L., & Karlsson, A. M. (2011). Mechanical behavior of bio-inspired laminated composites. Composites Part A: Applied Science and Manufacturing, 42(2), 211-220. doi:doi.org/10.1016/j.compositesa.2010.11.009
Drosos, V., Georgarakos, T., Loli, M., Anastasopoulos, I., Zarzouras, O., & Gazetas, G. (2012). Soil-Foundation-Structure Interaction with Mobilization of Bearing Capacity: Experimental Study on Sand. Journal of Geotechnical and Geoenvironmental Engineering, 138(11), 1369-1386. doi:doi.org/10.1061/(ASCE)GT.1943-5606.0000705
Familiana, H., Maulana, I., Karyadi, A., Cebro, I. S., & Sitorus, A. (2017). Characterization of aluminum surface using image processing methods and artificial neural network methods. In 2017 International Conference on Computing, Engineering, and Design (ICCED) (pp. 1-6). IEEE. doi:10.1109/CED.2017.8308113.
Fan, M., & Fu, F. (2017). 1 - Introduction: A perspective – natural fibre composites in construction. Advanced High Strength Natural Fibre Composites in Construction, 1-20. doi:doi.org/10.1016/B978-0-08-100411-1.00001-7
Gauch, H. L., Hawkins, W., Ibell, T., Allwood, J. M., & Dunant, C. F. (2022). Carbon vs. cost option mapping: A tool for improving early-stage design decisions. Automation in Construction, 136, 104178. doi:doi.org/10.1016/j.autcon.2022.104178
Guo, H., Liu, Y., Meng, Y., Huang, H., Sun, C., & Shao, Y. (2017). A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China. Sustainability, 9(8). doi:doi.org/10.3390/su9081426
Ibañez, D., Salka, M., Guallart, V., Boeri, S., Shamir, L., De Marco, M. L., . . . Boulet, S. (2023). Innovative Design, Materials, and Construction Models for BioCities. Transforming Biocities: Designing Urban Spaces Inspired by Nature, 183-215. doi:doi.org/10.1007/978-3-031-29466-2_8
Jones, K., Stegemann, J., Sykes, J., & Winslow, P. (2016). Adoption of unconventional approaches in construction: The case of cross-laminated timber. Construction and Building Materials, 125, 690-702. doi:doi.org/10.1016/j.conbuildmat.2016.08.088
Khaleghi, M., Salimi, J., Farhangi, V., Moradi, M. J., & Karakouzian, M. (2021). Application of Artificial Neural Network to Predict Load Bearing Capacity and Stiffness of Perforated Masonry Walls. CivilEng, 2(1), 48-67. doi:doi.org/10.3390/civileng2010004
Kurent, B., Brank, B., & Ao, W. K. (2023). Model updating of seven-storey cross-laminated timber building designed on frequency-response-functions-based modal testing. Structure and Infrastructure Engineering, 19(2), 178-196. doi:doi.org/10.1080/15732479.2021.1931893
Li, X., Ashraf, M., Subhani, M., Kremer, P., Li, H., & Anwar-Us-Saadat, M. (2021). Rolling shear properties of cross-laminated timber (CLT) made from Australian Radiata Pine – An experimental study. Structures, 33, 423-432. doi:doi.org/10.1016/j.istruc.2021.04.067
Lineham, S. A., Thomson, D., Bartlett, A. I., Bisby, L. A., & Hadden, R. M. (2016). Structural response of fire-exposed cross-laminated timber beams under sustained loads. Fire Safety Journal, 85, 23-34. doi:doi.org/10.1016/j.firesaf.2016.08.002
Llorca, J., González, C., Molina-Aldareguía, J. M., Segurado, J., Seltzer, R., Sket, F., . . . Canal, L. P. (2011). Multiscale Modeling of Composite Materials: a Roadmap Towards Virtual Testing. Advanced Materials, 23(44), 5130-5147. doi:doi.org/10.1002/adma.201101683
Martini, R., Balit, Y., & Barthelat, F. (2017). A comparative study of bio-inspired protective scales using 3D printing and mechanical testing. Acta Biomaterialia, 55, 360-372. doi:doi.org/10.1016/j.actbio.2017.03.025
Mayencourt, P., & Mueller, C. (2019). Structural Optimization of Cross-laminated Timber Panels in One-way Bending. Structures, 18, 48-59. doi:doi.org/10.1016/j.istruc.2018.12.009
Navaratnam, S., Widdowfield Small, D., Gatheeshgar, P., Poologanathan, K., Thamboo, J., Higgins, C., & Mendis, P. (2021). Development of cross laminated timber-cold-formed steel composite beam for floor system to sustainable modular building construction. Structures, 32, 681-690. doi:doi.org/10.1016/j.istruc.2021.03.051
Naya, F., González, C., Lopes, C. S., Van der Veen, S., & Pons, F. (2017). Computational micromechanics of the transverse and shear behavior of unidirectional fiber reinforced polymers including environmental effects. Composites Part A: Applied Science and Manufacturing, 92, 146-157. doi:doi.org/10.1016/j.compositesa.2016.06.018
Rivera, J., Murata, S., Hosseini, M. S., Trikanad, A. A., James, R., Pickle, A., . . . Kisailus, D. (2021). Structural Design Variations in Beetle Elytra. Advanced Functional Materials, 31(50), 2106468. doi:doi.org/10.1002/adfm.202106468
Ronquillo, G., Hopkin, D., & Spearpoint, M. (2021). Review of large-scale fire tests on cross-laminated timber. Journal of Fire Sciences, 39(5), 327-369. doi:doi.org/10.1177/07349041211034460
Sandberg, D., Gorbacheva, G., Lichtenegger, H., Niemz, P., & Teischinger, A. (2023). Advanced Engineered Wood-Material Concepts. Springer Handbook of Wood Science and Technology, 1835-1888. doi:doi.org/10.1007/978-3-030-81315-4_35
Sood, A. K., Ohdar, R. K., & Mahapatra, S. S. (2010). Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design, 31(1), 287-295. doi:doi.org/10.1016/j.matdes.2009.06.016
Sugito, S., Alisjahbana, S. W., & Riyanto, H. (2022). Modeling of Mechanical Performance from Concrete Made by Combining Iron Sand and Glass Powder Filler under Hot Water Curing Condition. Mathematical Modelling of Engineering Problems, 9(2). doi:doi.org/10.18280/mmep.090216
Yu, J., & Tan, K.-H. (2013). Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages. Engineering Structures, 55, 90-106. doi:doi.org/10.1016/j.engstruct.2011.08.040
Anthony, C. J., & Ali, M. M. (2023). Structural Design of a Single-Family Residential Dwelling Using Cross-Laminated Timber (CLT). Sustainable Built Environment, Ch. 14. doi:doi.org/10.5772/intechopen.110790
ASTM. (2013). American society for testing materials: Standard test method for strength properties of adhesive bonds in shear by compression loading: ASTM D 905. Annual Book of ASTM Standards, 15. doi:doi.org/10.1520/D0905-08R13
Ba, J., Ji, X., Wang, B., Li, P., Lin, J., Cao, J., & Qi, J. (2022). Microstructure design of C/C composites through electrochemical corrosion for brazing to Nb. Journal of Materials Science & Technology, 104, 33-40. doi:doi.org/10.1016/j.jmst.2021.06.074
Bechert, S., Aldinger, L., Wood, D., Knippers, J., & Menges, A. (2021). Urbach Tower: Integrative structural design of a lightweight structure made of self-shaped curved cross-laminated timber. Structures, 33, 3667-3681. doi:doi.org/10.1016/j.istruc.2021.06.073
Bhandari, S., Riggio, M., Jahedi, S., Fischer, E. C., Muszynski, L., & Luo, Z. (2023). A review of modular cross laminated timber construction: Implications for temporary housing in seismic areas. Journal of Building Engineering, 63, 105485. doi:doi.org/10.1016/j.jobe.2022.105485
Bischoff, E. E. (2006). Three-dimensional packing of items with limited load bearing strength. European Journal of Operational Research, 168(3), 952-966. doi:doi.org/10.1016/j.ejor.2004.04.037
Bos, F., Wolfs, R., Ahmed, Z., & Salet, T. (2016). Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual and Physical Prototyping, 11(3), 209-225. doi:doi.org/10.1080/17452759.2016.1209867
Browning, A., Ortiz, C., & Boyce, M. C. (2013). Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues. Journal of the Mechanical Behavior of Biomedical Materials, 19, 75-86. doi:doi.org/10.1016/j.jmbbm.2012.11.003
Cheng, L., Thomas, A., Glancey, J. L., & Karlsson, A. M. (2011). Mechanical behavior of bio-inspired laminated composites. Composites Part A: Applied Science and Manufacturing, 42(2), 211-220. doi:doi.org/10.1016/j.compositesa.2010.11.009
Drosos, V., Georgarakos, T., Loli, M., Anastasopoulos, I., Zarzouras, O., & Gazetas, G. (2012). Soil-Foundation-Structure Interaction with Mobilization of Bearing Capacity: Experimental Study on Sand. Journal of Geotechnical and Geoenvironmental Engineering, 138(11), 1369-1386. doi:doi.org/10.1061/(ASCE)GT.1943-5606.0000705
Familiana, H., Maulana, I., Karyadi, A., Cebro, I. S., & Sitorus, A. (2017). Characterization of aluminum surface using image processing methods and artificial neural network methods. In 2017 International Conference on Computing, Engineering, and Design (ICCED) (pp. 1-6). IEEE. doi:10.1109/CED.2017.8308113.
Fan, M., & Fu, F. (2017). 1 - Introduction: A perspective – natural fibre composites in construction. Advanced High Strength Natural Fibre Composites in Construction, 1-20. doi:doi.org/10.1016/B978-0-08-100411-1.00001-7
Gauch, H. L., Hawkins, W., Ibell, T., Allwood, J. M., & Dunant, C. F. (2022). Carbon vs. cost option mapping: A tool for improving early-stage design decisions. Automation in Construction, 136, 104178. doi:doi.org/10.1016/j.autcon.2022.104178
Guo, H., Liu, Y., Meng, Y., Huang, H., Sun, C., & Shao, Y. (2017). A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China. Sustainability, 9(8). doi:doi.org/10.3390/su9081426
Ibañez, D., Salka, M., Guallart, V., Boeri, S., Shamir, L., De Marco, M. L., . . . Boulet, S. (2023). Innovative Design, Materials, and Construction Models for BioCities. Transforming Biocities: Designing Urban Spaces Inspired by Nature, 183-215. doi:doi.org/10.1007/978-3-031-29466-2_8
Jones, K., Stegemann, J., Sykes, J., & Winslow, P. (2016). Adoption of unconventional approaches in construction: The case of cross-laminated timber. Construction and Building Materials, 125, 690-702. doi:doi.org/10.1016/j.conbuildmat.2016.08.088
Khaleghi, M., Salimi, J., Farhangi, V., Moradi, M. J., & Karakouzian, M. (2021). Application of Artificial Neural Network to Predict Load Bearing Capacity and Stiffness of Perforated Masonry Walls. CivilEng, 2(1), 48-67. doi:doi.org/10.3390/civileng2010004
Kurent, B., Brank, B., & Ao, W. K. (2023). Model updating of seven-storey cross-laminated timber building designed on frequency-response-functions-based modal testing. Structure and Infrastructure Engineering, 19(2), 178-196. doi:doi.org/10.1080/15732479.2021.1931893
Li, X., Ashraf, M., Subhani, M., Kremer, P., Li, H., & Anwar-Us-Saadat, M. (2021). Rolling shear properties of cross-laminated timber (CLT) made from Australian Radiata Pine – An experimental study. Structures, 33, 423-432. doi:doi.org/10.1016/j.istruc.2021.04.067
Lineham, S. A., Thomson, D., Bartlett, A. I., Bisby, L. A., & Hadden, R. M. (2016). Structural response of fire-exposed cross-laminated timber beams under sustained loads. Fire Safety Journal, 85, 23-34. doi:doi.org/10.1016/j.firesaf.2016.08.002
Llorca, J., González, C., Molina-Aldareguía, J. M., Segurado, J., Seltzer, R., Sket, F., . . . Canal, L. P. (2011). Multiscale Modeling of Composite Materials: a Roadmap Towards Virtual Testing. Advanced Materials, 23(44), 5130-5147. doi:doi.org/10.1002/adma.201101683
Martini, R., Balit, Y., & Barthelat, F. (2017). A comparative study of bio-inspired protective scales using 3D printing and mechanical testing. Acta Biomaterialia, 55, 360-372. doi:doi.org/10.1016/j.actbio.2017.03.025
Mayencourt, P., & Mueller, C. (2019). Structural Optimization of Cross-laminated Timber Panels in One-way Bending. Structures, 18, 48-59. doi:doi.org/10.1016/j.istruc.2018.12.009
Navaratnam, S., Widdowfield Small, D., Gatheeshgar, P., Poologanathan, K., Thamboo, J., Higgins, C., & Mendis, P. (2021). Development of cross laminated timber-cold-formed steel composite beam for floor system to sustainable modular building construction. Structures, 32, 681-690. doi:doi.org/10.1016/j.istruc.2021.03.051
Naya, F., González, C., Lopes, C. S., Van der Veen, S., & Pons, F. (2017). Computational micromechanics of the transverse and shear behavior of unidirectional fiber reinforced polymers including environmental effects. Composites Part A: Applied Science and Manufacturing, 92, 146-157. doi:doi.org/10.1016/j.compositesa.2016.06.018
Rivera, J., Murata, S., Hosseini, M. S., Trikanad, A. A., James, R., Pickle, A., . . . Kisailus, D. (2021). Structural Design Variations in Beetle Elytra. Advanced Functional Materials, 31(50), 2106468. doi:doi.org/10.1002/adfm.202106468
Ronquillo, G., Hopkin, D., & Spearpoint, M. (2021). Review of large-scale fire tests on cross-laminated timber. Journal of Fire Sciences, 39(5), 327-369. doi:doi.org/10.1177/07349041211034460
Sandberg, D., Gorbacheva, G., Lichtenegger, H., Niemz, P., & Teischinger, A. (2023). Advanced Engineered Wood-Material Concepts. Springer Handbook of Wood Science and Technology, 1835-1888. doi:doi.org/10.1007/978-3-030-81315-4_35
Sood, A. K., Ohdar, R. K., & Mahapatra, S. S. (2010). Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design, 31(1), 287-295. doi:doi.org/10.1016/j.matdes.2009.06.016
Sugito, S., Alisjahbana, S. W., & Riyanto, H. (2022). Modeling of Mechanical Performance from Concrete Made by Combining Iron Sand and Glass Powder Filler under Hot Water Curing Condition. Mathematical Modelling of Engineering Problems, 9(2). doi:doi.org/10.18280/mmep.090216
Yu, J., & Tan, K.-H. (2013). Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages. Engineering Structures, 55, 90-106. doi:doi.org/10.1016/j.engstruct.2011.08.040