How to cite this paper
Ashkpour, A., Bidadi, J & Googarchin, H. (2023). Numerical analysis of mixed-mode I+II fracture behavior of automotive PVB laminated glass using a novel beam-type test specimen.Engineering Solid Mechanics, 11(4), 401-410.
Refrences
Akbardoost, J., & Bidadi, J. (2020). Experimental Investigation on the Effect of the Specimen Thickness on the Mode II Fracture Resistance of Rocks. Journal of Engineering Geology, 14(2), 203–222.
Aliha, M. R.M., Bahmani, A., & Akhondi, S. (2016). A novel test specimen for investigating the mixed mode I+III fracture toughness of hot mix asphalt composites - Experimental and theoretical study. International Journal of Solids and Structures, 90, 167–177. https://doi.org/10.1016/j.ijsolstr.2016.03.018
Aliha, M. R.M., Hosseinpour, G. R., & Ayatollahi, M. R. (2013). Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mechanics and Rock Engineering, 46(5), 1023–1034. https://doi.org/10.1007/s00603-012-0325-z
Aliha, Mohammad Reza Mohammad, Kucheki, H. G., & Mirsayar, M. (2021). Mixed mode i/ii fracture analysis of bi-material adhesive bonded joints using a novel short beam specimen. Applied Sciences (Switzerland), 11(11). https://doi.org/10.3390/app11115232
Amin, M., Cormie, D., Smith, D., Wholey, W., Blackman, B. R. K., Dear, J. P., & Hooper, P. A. (2019). On the bonding between glass and PVB in laminated glass. Engineering Fracture Mechanics, 214(October 2018), 504–519. https://doi.org/10.1016/j.engfracmech.2019.04.006
Arora, P. K., Srivastava, S. C., Lohumi, M. K., & Kumar, H. (2018). Progressive damage response and crack growth direction for multiple through cracks of laminated composite finite plate. Engineering Solid Mechanics, 6(4), 371–389. https://doi.org/10.5267/j.esm.2018.9.003
Ayatollahi, M. R., & Aliha, M. R. M. (2007). Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Computational Materials Science, 38(4), 660–670. https://doi.org/10.1016/j.commatsci.2006.04.008
Ayatollahi, M. R., & Aliha, M. R. M. (2009). Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture Mechanics, 76(11), 1563–1573. https://doi.org/10.1016/j.engfracmech.2009.02.016
Ayatollahi, M. R., & Aliha, M. R. M. (2011). On the use of an anti-symmetric four-point bend specimen for mode II fracture experiments. Fatigue and Fracture of Engineering Materials and Structures, 34(11), 898–907. https://doi.org/10.1111/j.1460-2695.2011.01583.x
Ayatollahi, M. R., Aliha, M. R. M., & Saghafi, H. (2011). An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Engineering Fracture Mechanics, 78(1), 110–123. https://doi.org/10.1016/j.engfracmech.2010.10.001
Barrinaya, M. A., Alfiyuranda, M. N., Ramezani, M., Putra, I. S., Ramesh, S., Kadarno, P., Hastuty, S., & Purbolaksono, J. (2022). Modes I-II-III stress intensity factors of a semi-elliptical surface crack at a round bar under torsion loading by FEM and DBEM. Engineering Solid Mechanics, 10(4), 399–406. https://doi.org/10.5267/j.esm.2022.6.099
Bidadi, J., Saeidi Googarchin, H., Akhavan-Safar, A., & da Silva, L. F. M. (2023). Loading rate effects on mixed-mode I/II fracture envelope of epoxy resins with nonlinear behavior. Theoretical and Applied Fracture Mechanics, 125, 103858. https://doi.org/10.1016/j.tafmec.2023.103858
Bidadi, J, Hampaiyan Miandowab1, H., & Saeidi Googarchin, H. (2023). Experimental and Numerical Investigation of the Performance of Automotive Adhesively Bonded Crash Box Beams Under Transverse Loading. Automotive Science and Engineering, 13(2), 4085–4091. https://doi.org/10.22068/ASE.2023.637
Bidadi, Jamal, Akbardoost, J., & Aliha, M. R. M. (2020). Thickness effect on the mode III fracture resistance and fracture path of rock using ENDB specimens. Fatigue and Fracture of Engineering Materials and Structures, 43(2), 277–291. https://doi.org/10.1111/ffe.13121
Bidadi, Jamal, Akbardoost, J., Aliha, M. R. M., Googarchin, H. S., Akhavan-Safar, A., & da Silva, L. F. M. (2023). Mixed-Mode I/II Fracture Load Prediction in Cracked Rock Geometries Using the Tangential Stress Contour (TSC) Method. 1st International Conference on Mechanics of Solids 2022: Selected Contributions of MS 2022, 65–90.
Bidadi, Jamal, Aliha, M. R. M., & Akbardoost, J. (2022). Development of maximum tangential strain (MTSN) criterion for prediction of mixed-mode I/III brittle fracture. International Journal of Solids and Structures, 256(February), 111979. https://doi.org/10.1016/j.ijsolstr.2022.111979
Chen, S., Chen, Z., Chen, X., & Schneider, J. (2022). Evaluation of the delamination performance of polyvinyl-butyral laminated glass by through-cracked tensile tests. Construction and Building Materials, 341(January), 127914. https://doi.org/10.1016/j.conbuildmat.2022.127914
Chen, X., Rosendahl, P. L., Chen, S., & Schneider, J. (2021). On the delamination of polyvinyl butyral laminated glass: Identification of fracture properties from numerical modelling. Construction and Building Materials, 306(September), 124827. https://doi.org/10.1016/j.conbuildmat.2021.124827
Choubey, R. K., & Kumar, S. (2022). Simplified equations for determining double-k fracture parameters of concrete for compact tension test. Engineering Solid Mechanics, 10(1), 57–70. https://doi.org/10.5267/j.esm.2021.10.002
Choupani, N., & Torun, A. R. (2022). Fracture characterization of bonded composites: A comparative study. Engineering Solid Mechanics, 10(1), 109–116. https://doi.org/10.5267/j.esm.2021.8.001
Emri, I., & Knauss, W. G. (1995). 1st International Conference on Mechanics of Time Dependent Materials.
Ferreira, D. A., Savioli, R., & Sarzosa, D. F. B. (2021). New formulation for fracture toughness characterization using four-point bend specimens. Engineering Fracture Mechanics, 241(November 2020), 107409. https://doi.org/10.1016/j.engfracmech.2020.107409
Fuchs, H. O., Stephens, R. I., & Saunders, H. (1981). Metal Fatigue in Engineering (1980). In Journal of Engineering Materials and Technology (Vol. 103, Issue 4). https://doi.org/10.1115/1.3225026
Griffits, A. A. (1995). The phenomena of rupture and flow in solids. Masinovedenie, C(1), 9–14. https://doi.org/10.1098/rsta.1921.0006
Jagota, A., Bennison, S. J., & Smith, C. A. (2000). Analysis of a compressive shear test for adhesion between elastomeric polymers and rigid substrates. International Journal of Fracture, 104(2), 105–130. https://doi.org/10.1023/A:1007617102311
Khansari, N. M., Farrokhi, A., & Mosavi, A. (2019). Orthotropic mode II shear test fixture: Iosipesque modification. Engineering Solid Mechanics, 7(2), 93–108. https://doi.org/10.5267/j.esm.2019.4.003
Malek, M., & Keymanesh, M. (2023). Impact of thickness, void content, temperature and loading rate on tensile fracture toughness and work of fracture of asphalt mixtures-An experimental study using the SCB test. Engineering Solid Mechanics, 11(2), 163–174. https://doi.org/10.5267/j.esm.2022.12.004
Mirsayar, M. M. (2013). Calculation of stress intensity factors for an interfacial notch of a bi-material joint using photoelasticity. Engineering Solid Mechanics, 1(4), 149–153. https://doi.org/10.5267/j.esm.2013.09.006
Mirsayar, M. M. (2014). A new mixed mode fracture test specimen covering positive and negative values of T-stress. Engineering Solid Mechanics, 2(2), 67–72. https://doi.org/10.5267/j.esm.2014.2.006
Mirsayar, M. M., Shi, X., & Zollinger, D. G. (2017). Evaluation of interfacial bond strength between Portland cement concrete and asphalt concrete layers using bi-material SCB test specimen. Engineering Solid Mechanics, 5(4), 293–306. https://doi.org/10.5267/j.esm.2017.8.001
Poblete, F. R., Mondal, K., Ma, Y., Dickey, M. D., Genzer, J., & Zhu, Y. (2022). Direct measurement of rate-dependent mode I and mode II traction-separation laws for cohesive zone modeling of laminated glass. Composite Structures, 279(September 2021), 114759. https://doi.org/10.1016/j.compstruct.2021.114759
Ragab, A.-R., & Bayoumi, S. E. (2018). Engineering Solid Mechanics. Engineering Solid Mechanics, 11, 325–338. https://doi.org/10.1201/9780203757307
Shahbazian, B., & Mirsayar, M. M. (2023). Fracture mechanics of cellular structures: past, present, and future directions. Engineering Solid Mechanics, 11(2), 231–242. https://doi.org/10.5267/j.esm.2022.11.004
Aliha, M. R.M., Bahmani, A., & Akhondi, S. (2016). A novel test specimen for investigating the mixed mode I+III fracture toughness of hot mix asphalt composites - Experimental and theoretical study. International Journal of Solids and Structures, 90, 167–177. https://doi.org/10.1016/j.ijsolstr.2016.03.018
Aliha, M. R.M., Hosseinpour, G. R., & Ayatollahi, M. R. (2013). Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mechanics and Rock Engineering, 46(5), 1023–1034. https://doi.org/10.1007/s00603-012-0325-z
Aliha, Mohammad Reza Mohammad, Kucheki, H. G., & Mirsayar, M. (2021). Mixed mode i/ii fracture analysis of bi-material adhesive bonded joints using a novel short beam specimen. Applied Sciences (Switzerland), 11(11). https://doi.org/10.3390/app11115232
Amin, M., Cormie, D., Smith, D., Wholey, W., Blackman, B. R. K., Dear, J. P., & Hooper, P. A. (2019). On the bonding between glass and PVB in laminated glass. Engineering Fracture Mechanics, 214(October 2018), 504–519. https://doi.org/10.1016/j.engfracmech.2019.04.006
Arora, P. K., Srivastava, S. C., Lohumi, M. K., & Kumar, H. (2018). Progressive damage response and crack growth direction for multiple through cracks of laminated composite finite plate. Engineering Solid Mechanics, 6(4), 371–389. https://doi.org/10.5267/j.esm.2018.9.003
Ayatollahi, M. R., & Aliha, M. R. M. (2007). Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Computational Materials Science, 38(4), 660–670. https://doi.org/10.1016/j.commatsci.2006.04.008
Ayatollahi, M. R., & Aliha, M. R. M. (2009). Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture Mechanics, 76(11), 1563–1573. https://doi.org/10.1016/j.engfracmech.2009.02.016
Ayatollahi, M. R., & Aliha, M. R. M. (2011). On the use of an anti-symmetric four-point bend specimen for mode II fracture experiments. Fatigue and Fracture of Engineering Materials and Structures, 34(11), 898–907. https://doi.org/10.1111/j.1460-2695.2011.01583.x
Ayatollahi, M. R., Aliha, M. R. M., & Saghafi, H. (2011). An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Engineering Fracture Mechanics, 78(1), 110–123. https://doi.org/10.1016/j.engfracmech.2010.10.001
Barrinaya, M. A., Alfiyuranda, M. N., Ramezani, M., Putra, I. S., Ramesh, S., Kadarno, P., Hastuty, S., & Purbolaksono, J. (2022). Modes I-II-III stress intensity factors of a semi-elliptical surface crack at a round bar under torsion loading by FEM and DBEM. Engineering Solid Mechanics, 10(4), 399–406. https://doi.org/10.5267/j.esm.2022.6.099
Bidadi, J., Saeidi Googarchin, H., Akhavan-Safar, A., & da Silva, L. F. M. (2023). Loading rate effects on mixed-mode I/II fracture envelope of epoxy resins with nonlinear behavior. Theoretical and Applied Fracture Mechanics, 125, 103858. https://doi.org/10.1016/j.tafmec.2023.103858
Bidadi, J, Hampaiyan Miandowab1, H., & Saeidi Googarchin, H. (2023). Experimental and Numerical Investigation of the Performance of Automotive Adhesively Bonded Crash Box Beams Under Transverse Loading. Automotive Science and Engineering, 13(2), 4085–4091. https://doi.org/10.22068/ASE.2023.637
Bidadi, Jamal, Akbardoost, J., & Aliha, M. R. M. (2020). Thickness effect on the mode III fracture resistance and fracture path of rock using ENDB specimens. Fatigue and Fracture of Engineering Materials and Structures, 43(2), 277–291. https://doi.org/10.1111/ffe.13121
Bidadi, Jamal, Akbardoost, J., Aliha, M. R. M., Googarchin, H. S., Akhavan-Safar, A., & da Silva, L. F. M. (2023). Mixed-Mode I/II Fracture Load Prediction in Cracked Rock Geometries Using the Tangential Stress Contour (TSC) Method. 1st International Conference on Mechanics of Solids 2022: Selected Contributions of MS 2022, 65–90.
Bidadi, Jamal, Aliha, M. R. M., & Akbardoost, J. (2022). Development of maximum tangential strain (MTSN) criterion for prediction of mixed-mode I/III brittle fracture. International Journal of Solids and Structures, 256(February), 111979. https://doi.org/10.1016/j.ijsolstr.2022.111979
Chen, S., Chen, Z., Chen, X., & Schneider, J. (2022). Evaluation of the delamination performance of polyvinyl-butyral laminated glass by through-cracked tensile tests. Construction and Building Materials, 341(January), 127914. https://doi.org/10.1016/j.conbuildmat.2022.127914
Chen, X., Rosendahl, P. L., Chen, S., & Schneider, J. (2021). On the delamination of polyvinyl butyral laminated glass: Identification of fracture properties from numerical modelling. Construction and Building Materials, 306(September), 124827. https://doi.org/10.1016/j.conbuildmat.2021.124827
Choubey, R. K., & Kumar, S. (2022). Simplified equations for determining double-k fracture parameters of concrete for compact tension test. Engineering Solid Mechanics, 10(1), 57–70. https://doi.org/10.5267/j.esm.2021.10.002
Choupani, N., & Torun, A. R. (2022). Fracture characterization of bonded composites: A comparative study. Engineering Solid Mechanics, 10(1), 109–116. https://doi.org/10.5267/j.esm.2021.8.001
Emri, I., & Knauss, W. G. (1995). 1st International Conference on Mechanics of Time Dependent Materials.
Ferreira, D. A., Savioli, R., & Sarzosa, D. F. B. (2021). New formulation for fracture toughness characterization using four-point bend specimens. Engineering Fracture Mechanics, 241(November 2020), 107409. https://doi.org/10.1016/j.engfracmech.2020.107409
Fuchs, H. O., Stephens, R. I., & Saunders, H. (1981). Metal Fatigue in Engineering (1980). In Journal of Engineering Materials and Technology (Vol. 103, Issue 4). https://doi.org/10.1115/1.3225026
Griffits, A. A. (1995). The phenomena of rupture and flow in solids. Masinovedenie, C(1), 9–14. https://doi.org/10.1098/rsta.1921.0006
Jagota, A., Bennison, S. J., & Smith, C. A. (2000). Analysis of a compressive shear test for adhesion between elastomeric polymers and rigid substrates. International Journal of Fracture, 104(2), 105–130. https://doi.org/10.1023/A:1007617102311
Khansari, N. M., Farrokhi, A., & Mosavi, A. (2019). Orthotropic mode II shear test fixture: Iosipesque modification. Engineering Solid Mechanics, 7(2), 93–108. https://doi.org/10.5267/j.esm.2019.4.003
Malek, M., & Keymanesh, M. (2023). Impact of thickness, void content, temperature and loading rate on tensile fracture toughness and work of fracture of asphalt mixtures-An experimental study using the SCB test. Engineering Solid Mechanics, 11(2), 163–174. https://doi.org/10.5267/j.esm.2022.12.004
Mirsayar, M. M. (2013). Calculation of stress intensity factors for an interfacial notch of a bi-material joint using photoelasticity. Engineering Solid Mechanics, 1(4), 149–153. https://doi.org/10.5267/j.esm.2013.09.006
Mirsayar, M. M. (2014). A new mixed mode fracture test specimen covering positive and negative values of T-stress. Engineering Solid Mechanics, 2(2), 67–72. https://doi.org/10.5267/j.esm.2014.2.006
Mirsayar, M. M., Shi, X., & Zollinger, D. G. (2017). Evaluation of interfacial bond strength between Portland cement concrete and asphalt concrete layers using bi-material SCB test specimen. Engineering Solid Mechanics, 5(4), 293–306. https://doi.org/10.5267/j.esm.2017.8.001
Poblete, F. R., Mondal, K., Ma, Y., Dickey, M. D., Genzer, J., & Zhu, Y. (2022). Direct measurement of rate-dependent mode I and mode II traction-separation laws for cohesive zone modeling of laminated glass. Composite Structures, 279(September 2021), 114759. https://doi.org/10.1016/j.compstruct.2021.114759
Ragab, A.-R., & Bayoumi, S. E. (2018). Engineering Solid Mechanics. Engineering Solid Mechanics, 11, 325–338. https://doi.org/10.1201/9780203757307
Shahbazian, B., & Mirsayar, M. M. (2023). Fracture mechanics of cellular structures: past, present, and future directions. Engineering Solid Mechanics, 11(2), 231–242. https://doi.org/10.5267/j.esm.2022.11.004