How to cite this paper
Hangarage, R., Khairnar, B., Sawant, R., Sonawane, H., Chavan, P & Deore, J. (2025). Synthetic of Benzimidazole analogs based on the O-phenylenediamine: A mini review.Current Chemistry Letters, 14(2), 323-338.
Refrences
1. Vashist N., Sambi S. S., Narasimhan B., Kumar S., Lim S. M., Shah S. A. A., and Mani V. (2018) Synthesis and biological profile of substituted benzimidazoles. Chem. Cent. J., 12, 1-12.
2. Hadole C. D., Rajput J. D., and Bendre R. S. (2018) Concise on some biologically important 2-substituted benzimidazole derivatives. Org Chem Curr Res, 7(3), 1-9.
3. Molou K.Y.G., Timotou A., Camara T.E., Coulibaly S., Kablan A.L.C., Coulibali S, Sissouma D. (2022). Design, Synthesis of a Novel N-substituted Benzimidazole Derivatives, Acta Chim Pharm Indica, 12 1–7. https://doi.org/10.37532/2277-288X.2022.12(3).184.
4. Rithe S. R., Jagtap R. S., and Ubarhande S. S. (2015) One pot synthesis of substituted benzimidazole derivatives and their characterization. Rasayan J. Chem, 8, 213-217.
5. Severin, O.O., Pilyo, S.G., Moskvina, V.S. et al. (2024) Synthesis and in vitro anticancer evaluation of functionalized 5-(4-piperazin-1-yl)-2-aryloxazoles and 5-[(4-arylsulfonyl)piperazin-1-yl]-2-phenyloxazoles. Chem Heterocycl Comp 60, 68–74 https://doi.org/10.1007/s10593-024-03295-2
6. Pavlinac, I.B., Starčević, K., Persoons, L. et al. (2024) Novel iminocoumarin imidazo[4,5-b]pyridine derivatives: design, synthesis, and biological evaluation. Chem Heterocycl Comp 60, 75–82. https://doi.org/10.1007/s10593-024-03296-1
7. Loskutov, O.A., Melnykov, K.P., Ryabukhin, S.V. et al. (2024) Thiazolo[5,4-b]indole derivatives as additives to cardioplegic solutions with increased time of preventing hypothermic ischemia. Chem Heterocycl Comp 60, 83–91 (2024). https://doi.org/10.1007/s10593-024-03297-0.
8. Klen, E.E., Nikitina, I.L., Khaliullin, F.A. et al. (2024) Reactions of thiiranes with NH-heterocycles: III. The synthesis of N2/N4-mono- and N2/N4-dithietane-containing 5-bromo-2,4-dihydro-1,2,4-triazol-3-ones and their antidepressant activity. Chem Heterocycl Comp 60, 357–364. https://doi.org/10.1007/s10593-024-03347-7
9. Brishty S. R., Hossain M. J., Khandaker M. U., Faruque M. R. I., Osman H., and Rahman S. A. (2021) A comprehensive account on recent progress in pharmacological activities of benzimidazole derivatives. Front. pharmacol., 12, 762807.
10. Sonawane H. R., Deore J. V., and Chavan P. N. (2022) Reusable nano catalysed synthesis of heterocycles: an overview. Chemistry Select, 7(8), e202103900.
11. Alinezhad H., Salehian F., and Biparva P. (2012) Synthesis of benzimidazole derivatives using heterogeneous ZnO nanoparticles. Synth. Commun., 42(1), 102-108.
12. Bharathi M., Indira S., Vinoth G., and Shanmuga Bharathi K. (2019) Immobilized Ni-Schiff-base metal complex on MCM-41 as a heterogeneous catalyst for the green synthesis of benzimidazole derivatives using glycerol as a solvent. J. Porous Mater., 26, 1377-1390.
13. Behbahani F. K., and Ziaei P. (2012) One-pot synthesis of 2-substituted benzimidazoles catalyzed by anhydrous FePO4. Chem. Heterocycle. Cmpd., 48, 1011-1017.
14. Beheshtiha Y.S., Heravi M.M., Amrollah M., Saeedi M., Fallah A. (2012) Bakers’ Yeast Catalyzed Synthesis of Benzimidazole and Quinoxaline Derivatives in Water, Chem. Sci. Trans. 1 134–138. https://doi.org/10.7598/cst2012.116.
15. Bharathi M., Indira S., Vinoth G., Mahalakshmi T., Induja E., and Shanmuga Bharathi K. (2020) Green synthesis of benzimidazole derivatives under ultrasound irradiation using Cu-Schiff base complexes embedded over MCM-41 as efficient and reusable catalysts. J. Coord. Chem., 73(4), 653-670.
16. Kumar T. B., Sumanth C., Rao A. D., Kalita D., Rao M. S., Sekhar K. C., and Pal M. (2012) Catalysis by FeF3 in water: a green synthesis of 2-substituted 1, 3-benzazoles and 1, 2-disubstituted benzimidazoles. RSC advances, 2(30), 11510-11519.
17. Jain R., Agarwal D. D., Sahu P. K., Selvam D. T., Sharma Y., Gupta R., and Prakash A. (2013) Mild and highly efficient copper (II) sulfate catalyzed one pot synthesis of 2-aryl benzimidazole using atmospheric air as an oxidant and its antibacterial study. Med. Chem. Res., 22, 1788-1794.
18. Peng J., Ye M., Zong C., Hu F., Feng L., Wang X., and Chen C. (2011) Copper-catalyzed intramolecular C−N bond formation: A straightforward synthesis of benzimidazole derivatives in water. J. Org. Chem., 76(2), 716-719.
19. Qin M., Fu Y., Wang X., Zhang Y., and Ma W. (2014) Green synthesis of benzimidazole derivatives catalyzed by ionic liquid under microwave irradiation. J. Iran. Chem. Soc., 11, 1553-1559.
20. Rajabi F., De S., and Luque R. (2015) An efficient and green synthesis of benzimidazole derivatives using SBA-15 supported cobalt nanocatalysts. Cat. Lett., 145, 1566-1570.
21. Riadi Y., Mamouni R., Azzalou R., Haddad M. E., Routier S., Guillaumet G., Lazar S. (2011) An efficient and reusable heterogeneous catalyst Animal Bone Meal for facile synthesis of benzimidazoles, benzoxazoles, and benzothiazoles, Tetrahedron Lett. 52 3492–3495. https://doi.org/10.1016/j.tetlet.2011.04.121.
22. Sonawane H., Deore J., Rajshri S., and Chavan P. (2023) Synthesis of ZnS nanomaterials and their applications via green approaches: an overview. BioNanoScience, 13(2), 879-890.
23. Valvi A. K., Gavit H. J., Nayak S. S., Shivankar V. S., and Wadhawa G. C. (2023) Synthesis of Benzimidazole and Benzothiazole Derivatives using Reusable Waste Stem of Trigonella Foenum-graecum Assisted Zinc Sulphide Nanoparticles: A Green and Efficient Solid Acid Catalyst. Mater. Today, 73, 481-486.
24. Bachhav H. M., Bhagat S. B., and Telvekar V. N. (2011) Efficient protocol for the synthesis of quinoxaline, benzoxazole and benzimidazole derivatives using glycerol as green solvent. Tetrahedron Lett., 52(43), 5697-5701.
25. Di Gioia M. L., Cassano R., Costanzo P., Herrera Cano N., Maiuolo L., Nardi M., and Procopio A. (2019) Green synthesis of privileged benzimidazole scaffolds using active deep eutectic solvent. Molecules, 24(16), 2885.
26. Eren B., and Erdogan G. (2012) Eco-friendly and efficient synthesis of benzimidazole derivatives using iron oxide modified sepiolite catalyst. React. Kinet. Mech. Catal., 107(2), 333-344.
27. Kumar K. R., Satyanarayana P. V. V., and Srinivasa Reddy B. (2013) NaHSO4‐SiO2‐Promoted Solvent‐Free Synthesis of Benzoxazoles, Benzimidazoles, and Benzothiazole Derivatives. J. Chem., (1), 151273.
28. Li Z., Ye Z., Chen L., Cui J., and Chen J. (2020) Hierarchically nanoporous titanium-based coordination polymers for photocatalytic synthesis of benzimidazole. ACS Appl. Nano Mater., 3(11), 10720-10731.
29. Pardeshi S. D., and Thore S. N. (2015) Mild and efficient synthesis of 2-aryl benzimidazoles in water using SDS. Int. J. Chem. Phys., 4, 300-307.
30. Radatz C. S., Silva R. B., Perin G., Lenardão E. J., Jacob R. G., and Alves D. (2011) Catalyst-free synthesis of benzodiazepines and benzimidazoles using glycerol as recyclable solvent. Tetrahedron Lett., 52(32), 4132-4136.
31. Afsharpour R., Zanganeh S., Kamantorki O., Fakhraei F., Rostami E. (2020) Activated carbon sulfonic acid (AC-SO3H) as a green acidic catalyst for solvent-free synthesis of benzimidazole derivatives, Asian J. Nanosci. Mater. 3 148–156. https://doi.org/10.26655/AJNANOMAT.2020.2.7.
32. Sadeghi B., and Ghasemi Nejad M. (2013) Silica Sulfuric Acid: An Eco‐Friendly and Reusable Catalyst for Synthesis of Benzimidazole Derivatives. J. Chem., (1), 581465.
33. Sajjadifar S., Mirshokraie S. A., Javaherneshan N., and Louie O. (2012) SBSA as a New and efficient catalyst for the one-pot green synthesis of benzimidazole derivatives at room temperature. Am. J. Org. Chem., 2(2), 1-6.
34. Shaikh K. A., and Patil V. A. (2012) An efficient solvent-free synthesis of imidazolines and benzimidazoles using K 4 [Fe (CN) 6] catalysis. Org. Commun., 5(1), 12.
35. Shi T. T., Wang S. Z., Yang Z., Wang Y., Liu C., He W., and Guo K. (2021) Enzymatic electrochemical continuous flow cascade synthesis of substituted benzimidazoles. React. Chem. Eng., 6(5), 937-943.
36. Sonawale M. C. (2020) GREEN SYNTHESIS OF BENZIMIDAZOLE DERIVATIVES USING AMINO ACID AS SIMPLE RECYCLABLE CATALYST, World J. Pharm. Pharm. Sci. 9 1871–1878. https://doi.org/10.20959/wjpps20208-16811.
37. Tzani M. A., Gabriel C., and Lykakis I. N. (2020) Selective synthesis of benzimidazoles from o-phenylenediamine and aldehydes promoted by supported gold nanoparticles. Nanomaterials, 10(12), 2405.
38. Yadav P., Kakati P., Singh P., and Awasthi S. K. (2021) Application of sulfonic acid fabricated cobalt ferrite nanoparticles as effective magnetic nano catalyst for green and facile synthesis of benzimidazoles. Appl. Catal. A Gen., 612, 118005.
39. Yu B., Zhang H., Zhao Y., Chen S., Xu J., Huang C., and Liu Z. (2013) Cyclization of o-phenylenediamines by CO2 in the presence of H2 for the synthesis of benzimidazoles. Green Chem., 15(1), 95-99.
40. Zhu, C., and Wei Y. (2011) An Inorganic Iodine‐Catalyzed Oxidative System for the Synthesis of Benzimidazoles Using Hydrogen Peroxide under Ambient Conditions. ChemSusChem, 4(8), 1082-1086.
41. Zhu G., Duan Z. C., Zhu H., Ye D., and Wang D. (2022) Selective CC bonds formation, N-alkylation and benzo [d] imidazoles synthesis by a recyclable zinc composite. Chin. Chem. Lett., 33(1), 266-270.
42. Sahu P. K. (2017) A green approach to the synthesis of a nano catalyst and the role of basicity, calcination, catalytic activity and aging in the green synthesis of 2-aryl bezimidazoles, benzothiazoles and benzoxazoles. RSC advances, 7(67), 42000-42012.
43. Elumalai V., and Hansen J. H. (2020) A green, scalable, one-minute synthesis of benzimidazoles. Synlett, 31(06), 547-552.
44. Tayade A. P., and Pawar R. P. (2022) The microwave assisted and efficient synthesis of 2-substituted benzimidazole mono-condensation of o-phenylenediamines and aldehyde. Polycycl. Aromat. Compd., 42(4), 1474-1478.
45. Rezaee Nezhad E., Tahmasebi R., (2019) Ionic liquid supported on magnetic nanoparticles as an efficient and reusable green catalyst for synthesis of benzimidazole derivatives under solvent and solvent-free conditions, Asian J. Green Chem. 3, 34–42. https://doi.org/10.22034/ajgc.2018.65743.
46. Cahyana A. H., Ardiansah B., and Asrianti N. A. (2018) Fe3O4 nanoparticles: An efficient and recyclable catalyst for benzimidazoles synthesis. In AIP Conference Proceedings (Vol. 2023, No. 1). AIP Publishing.
47. Reddy P. L., Arundhathi R., Tripathi M., and Rawat D. S. (2016) CuI nanoparticles mediated expeditious synthesis of 2-substituted benzimidazoles using molecular oxygen as the oxidant. RSC advances, 6(58), 53596-53601.
48. Yang D., Zhu X., Wei W., Sun N., Yuan L., Jiang M., and Wang H. (2014) Magnetically recoverable and reusable CuFe2O4 nanoparticle-catalyzed synthesis of benzoxazoles, benzothiazoles and benzimidazoles using dioxygen as oxidant. RSC Advances, 4(34), 17832-17839.
49. Wang Z. G., Zhu J., Zhu Z. S., Xu J., and Lu M. (2014) A green and efficient method for synthesis of benzimidazoles using nano‐Fe3O4 in PEG‐400/H2O aqueous system under ambient conditions at room temperature. Appl. Organomet. Chem., 28(6), 436-440.
50. Bardajee G. R., Mohammadi M., Yari H., and Ghaedi A. (2016) Simple and efficient protocol for the synthesis of benzoxazole, benzoimidazole and benzothiazole heterocycles using Fe (III)–Schiff base/SBA-15 as a nanocatalyst. Chin. Chem. Lett., 27(2), 265-270.
51. Dezfoolinezhad E., Ghodrati K., and Badri R. (2016) Fe3O4@SiO2@polyionene/Br 3− core–shell–shell magnetic nanoparticles: a novel catalyst for the synthesis of imidazole derivatives under solvent-free conditions. New J Chem., 40(5), 4575-4587.
52. Ziarati A., Sobhani-Nasab A., Rahimi-Nasrabadi M., Ganjali M. R., and Badiei A. (2017) Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2–xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. Journal of Rare Earths, 35(4), 374-381.
53. Behbahani F. K., Rezaee E., and Fakhroueian Z. (2014) Synthesis of 2-substituted benzimidazoles using 25% Co/Ce-ZrO2 as a heterogeneous and nano catalyst. Catal. Letters, 144, 2184-2190.
54. Bahrami K., Khodaei M. M., and Naali F. (2016) TiO2 nanoparticles catalysed synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles using hydrogen peroxide under ambient light. J. Exp. Nanosci., 11(2), 148-160.