How to cite this paper
Rezaei, I., Nobarzad, R., Shahri, F & Nazeriyeh, I. (2024). A novel, effective, green and recyclable α-Fe2O3@MoS2@Ni Magnetic nanocatalyst in preparation of a series of 1,2,4-triazolidine-3-thiones and spiro-triazole hybrids.Current Chemistry Letters, 13(4), 725-736.
Refrences
[1] 1. Al-Masoudi I. A., Al-Soud Y. A., Al-Salihi N. J., Al-Masoudi N. A. (2006¬) 1,2,4-Triazoles: synthetic approaches and pharmacological importance. Chem. Heterocycl. Compd., 42 (11) 1377-1403.
[2] 2. Pearson M. M., Rogers D., Cleary J. D., Chapman S. W. (2003) Voriconazole: a new triazole antifungal agent. Ann. Pharmacother. 37(3) 420-432.
[3] 3. Greer N. D. (2007) Posaconazole (Noxafil): a new triazole antifungal agent. Bayl. Uni. Med. Cent. 20 (2) 188-96.
[4] 4. Gural’skiy I. A., Reshetnikov V. I., Omelchenko I. V., Szebesczyk A., Gumienna-Konteckac E., Fritskya I. O. (2017) Synthesis, crystal structures and spectral characterization of chiral 4-R-1,2,4-triazoles. J. Mol. Struct. 1127 164-168.
[5] 5. Fan Y. L., Ke X., Liub M. (2018) Coumarin-triazole hybrids and their biological activities. J. Heterocycl. Chem. 55 (4) 791-802.
[6] 6. Süleymanoğlu N., Ustabaş R., Direkelc S., Alpasland Y. B., Ünvere Y. (2017) 1,2,4-Triazole derivative with Schiff base; thiol-thione tautomerism, DFT study and antileishmanial activity. J. Mol. Struct. 1150 82-87.
[7] 7. Kharb R., Sharma P. C., Yar M. S. (2011) Pharmacological significance of triazole scaffold. J. Enzyme. Inhib. Med. Chem. 26 (1) 1-21.
[8] 8. Hu Y. Q., Zhang S., Xu Z., Lv Z. S., Liu M. L., Feng L. S. (2017) 4-Quinolone hybrids and their antibacterial activities. Eur. J. Med. Chem. 140 335-345.
[9] 9. Chougala B. M., Samundeeswari S., Holiyachi M., Shastri L. A., Dodamani S., Jalapure S., Dixit S. R., Joshi S. D., Sunagar V. A. (2017) Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem. 125 101-116.
[10] 10. Fu N., Wang S., Zhang Y., Zhang C., Yang D., Weng L., Zhao B. (2017) Efficient click chemistry towards fatty acids containing 1,2,3-triazole: design and synthesis as potential antifungal drugs for candida albicans. Eur. J. Med. Chem. 136 596-602.
[11] 11. Banu K. M., Dinaker A., Ananthnarayan C. (1999) Synthesis, characterization of antimicrobial studies and pharmacological screening of some substituted 1,2,3-triazoles. Indian. J. Pharm. Sci. 61 (4) 202-205.
[12] 12. Chen L. Z., Sun W. W., Bo L., Wang J. Q., Xiu C., Tang W. J., Shi J. B., Zhou H. P., Liu X. H. (2017) New arylpyrazoline-coumarins: synthesis and anti-inflammatory activity. Eur. J. Med. Chem. 138 170-181.
[13] 13. Coskun D., Erkisa M., Ulukaya E., Coskun M. F., Ari F. (2017) Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Synthesis, characterization and anticancer activity. Eur. J. Med. Chem. 136 212-222
[14] 14. Akhtar J., Khan A. A., Ali Z., Haider R., Yar M. S. (2017) Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem. 125 143-189.
[15] 15. Gujjar R., Marwaha A., White J., White L., Creason S., Shackleford D. M., Baldwin J., Charman W. N., Buckner F. S., Charman S., Rathod P. K., Phillips M. A. (2009) Identification of a metabolically stable triazolopyrimidinebased dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J. Med. Chem. 52 (7) 1864-1872.
[16] 16. Hu Y. Q., Gao C., Zhang S., Xu L., Xu Z., Feng L. S., Wu X., Zhao F. (2017) Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem. 139 22-47.
[17] 17. Wen X., Zhou, Y., Zeng J., Liu X. (2020) Recent development of 1,2,4-triazole-containing compounds as anticancer agents. Curr. Topics. Med. Chem. 20 (16) 1441-1460.
[18] 18. Duran A., Dogan H. N., Rollas H. (2002) Synthesis and preliminary anticancer activity of new 1,4-dihydro-3- (3-hydroxy-2- naphthyl)-4-substituted-5H-1,2,4-triazoline-5-thiones. Farmaco. 57 (7) 559-564.
[19] 19. Dheer D., Singh V., Shankar R. (2017) Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem. 71 30-54.
[20] 20. Peyton L. R., Gallagher S., Hashemzadeh M. (2015) Triazole antifungals: a review. Drugs. Today. 51 (12) 705-718.
[21] 21. Zhou C. H., Wang Y. (2012) Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem. 19 (2) 239-280.
[22] 22. Aggarwal R., Sumran G. (2020) An insight on medicinal attributes of 1,2,4-triazoles. Eur. J. Med. Chem. 1 (205) 112652.
[23] 23. Da Silva F. D. C., De Souza M. C. B. V., Frugulhetti I. I. P., Castro H. C., Souza S. L. D. O., De Souza T. M. L., Rodrigues D. Q., Souza A. M. T., Abreu P. A., Passamani F., Rodrigues C. R., Ferreira V. F. (2009) Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur. J. Med. Chem. 44 (1) 373-383.
[24] 24. Giffin MJ, Heaslet H, Brik A, Lin YC, Cauvi G, Wong CH, McRee DE, Elder JH, Stout CD, Torbett B. E. (2008) A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J. Med. Chem. 51 (20) 6263-6270.
[25] 25. Yu W. J., Rao Q., Wang M., Tian Z., Lin D., Liu X. R., Wang J. X. (2006) The Hsp90 inhibitor 17-allylamide-17-demethoxygeldanamycin induces apoptosis and differentiation of Kasumi-1 harboring the Asn822Lys KIT mutation and down-regulates KIT protein level, Leukemia Res. Leuk. Res. 30 575-582.
[26] 26. Peterson L. B., Blagg S. J. B. (2010) Click chemistry to probe Hsp90: Synthesis and evaluation of a series of triazole-containing novobiocin analogues. Bioorg. Med. Chem. Lett. 20 (13) 3957-3960.
[27] 27. Dehshal N. G., Mamaghani M., Jahanshahi P., Rezaei I (2022) A green synthesis of novel derivatives of thiazole-5-one using magnetic supported copper nanocatalyst (γ-Fe2O3@HAp@CPTMS@AT@Cu(II)). Polycycl. Aromat. Compd. 1-16.
[28] 28. Yang Y., Hu W., Ye X., Wang D., Shi X. (2016) Preparation of triazole gold (III) complex as an effective catalyst for the synthesis of E-α-haloenones. Adv. Synth. Catal. 358 (16) 2583-2588.
[29] 29. Duan H., Sengupta S., Petersen J. L., Akhmedov N. G., Shi X. (2009) Triazole-Au (I) complexes: a new class of catalysts with improved thermal stability and reactivity for intermolecular alkyne hydroamination. J. Am. Chem. Soc. 131 (34) 12100-12102.
[30] 30. Sharma P., Rathod J., Singh A. P., Kumar P., Sasson Y. (2018) Synthesis of heterogeneous Ru (ii)-1, 2, 3-triazole catalyst supported over SBA-15: application to the hydrogen transfer reaction and unusual highly selective 1, 4-disubstituted triazole formation via multicomponent click reaction. Catal. Sci. Technol. 8 (13) 3246-3259.
[31] 31. Rezaei I., Mamaghani M. (2021) An efficient green synthesis of polyfunctional pyrazole-triazole hybrids and bis-triazoles via chromium incorporated fluorapatite encapsulated iron oxide nanocatalyst. Curr. Chem. Lett. 10 (4) 445-458.
[32] 32. Rezaei I., Mamaghani M. (2021) Green synthesis of bis pyrazole-triazole and azo-linked triazole hybrids using an efficient and novel cobalt nanocatalyst. React. Kinet. Mech. Catal. 134 385-400.
[33] 33. Pourkarim Z., Nikpassand M. (2020) Synthesis, characterization and application of Fe3O4@SiO2@ Tannic acid nanoparticles: a novel and magnetically recyclable catalyst for one-pot synthesis of novel 5-pyrazolin-1, 2, 4-triazolidine-3-ones (thiones). J. Mol. Struct. 1217 128433.
[34] 34. Nikpassand M., Farshami M. J. (2021) One-Pot Synthesis of Novel 3-Pyrazolyl-4H-1,2,4-triazoles Using Amino Glucose-Functionalized Silica-Coated NiFe2O4 Nanoparticles as a Magnetically Separable Catalyst. J. Clust. Sci. 32 975–982.
[35] 35. Patil J. D., Pore D. M. (2014) [C16MPy] AlCl3Br: an efficient novel ionic liquid for synthesis of novel 1, 2, 4-triazolidine-3-thiones in water. RSC Adv. 4 (28) 14314-14319.
[36] 36. Yin M., Wang Y., Yu L., Wang H., Zhu Y., Li C., (2020) Ag nanoparticles-modified Fe2O3@MoS2 core-shell micro/nanocomposites for high-performance NO2 gas detection at low temperature. J. Alloys. Compd. 829 154471
[37] 37. Uma K., Muniranthinam E., Chong S., Yang T. C. K., Lin J. H. (2020) Fabrication of hybrid catalyst ZnO nanorod/α-Fe2O3 composites for hydrogen evolution reaction. Crystals 10 (5) 356.
[38] 38. Yang X., Sun H., Zhang L., Zhao L., Lian J., Jiang Q., (2016) High efficient photo-Fenton catalyst of α-Fe2O3/MoS2 hierarchical nanoheterostructures: reutilization for supercapacitors. Sci. Rep. 6 (1) 31591.
[39] 39. Ramesh R., Lalitha A. (2015) PEG-assisted two-component approach for the facile synthesis of 5-aryl-1, 2, 4-triazolidine-3-thiones under catalyst-free conditions. RSC adv. 5 (63) 51188-51192.
[40] 40. Pore D. M., Hegade P. G., Mane M. M., Patil J. D. (2013) The unprecedented synthesis of novel spiro-1, 2, 4-triazolidinones. RSC adv. 3 (48) 25723-25726.
[41] 41. Masram L. B., Salim S. S., Barkule A. B., Gadkari Y. U., Telvekar V. N. (2022) An efficient and expeditious synthesis of 1,2,4-triazolidine-3-thiones using meglumine as a reusable catalyst in water. J. Chem. Sci. 134 94-100.
[42] 42. Korade S. N., Patil J. D., Pore D. M. (2016) Novel task-specific ionic liquid for room temperature synthesis of spiro-1, 2, 4-triazolidine-3-thiones. Monatsh. Chem. 147 2143-2149.
[2] 2. Pearson M. M., Rogers D., Cleary J. D., Chapman S. W. (2003) Voriconazole: a new triazole antifungal agent. Ann. Pharmacother. 37(3) 420-432.
[3] 3. Greer N. D. (2007) Posaconazole (Noxafil): a new triazole antifungal agent. Bayl. Uni. Med. Cent. 20 (2) 188-96.
[4] 4. Gural’skiy I. A., Reshetnikov V. I., Omelchenko I. V., Szebesczyk A., Gumienna-Konteckac E., Fritskya I. O. (2017) Synthesis, crystal structures and spectral characterization of chiral 4-R-1,2,4-triazoles. J. Mol. Struct. 1127 164-168.
[5] 5. Fan Y. L., Ke X., Liub M. (2018) Coumarin-triazole hybrids and their biological activities. J. Heterocycl. Chem. 55 (4) 791-802.
[6] 6. Süleymanoğlu N., Ustabaş R., Direkelc S., Alpasland Y. B., Ünvere Y. (2017) 1,2,4-Triazole derivative with Schiff base; thiol-thione tautomerism, DFT study and antileishmanial activity. J. Mol. Struct. 1150 82-87.
[7] 7. Kharb R., Sharma P. C., Yar M. S. (2011) Pharmacological significance of triazole scaffold. J. Enzyme. Inhib. Med. Chem. 26 (1) 1-21.
[8] 8. Hu Y. Q., Zhang S., Xu Z., Lv Z. S., Liu M. L., Feng L. S. (2017) 4-Quinolone hybrids and their antibacterial activities. Eur. J. Med. Chem. 140 335-345.
[9] 9. Chougala B. M., Samundeeswari S., Holiyachi M., Shastri L. A., Dodamani S., Jalapure S., Dixit S. R., Joshi S. D., Sunagar V. A. (2017) Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem. 125 101-116.
[10] 10. Fu N., Wang S., Zhang Y., Zhang C., Yang D., Weng L., Zhao B. (2017) Efficient click chemistry towards fatty acids containing 1,2,3-triazole: design and synthesis as potential antifungal drugs for candida albicans. Eur. J. Med. Chem. 136 596-602.
[11] 11. Banu K. M., Dinaker A., Ananthnarayan C. (1999) Synthesis, characterization of antimicrobial studies and pharmacological screening of some substituted 1,2,3-triazoles. Indian. J. Pharm. Sci. 61 (4) 202-205.
[12] 12. Chen L. Z., Sun W. W., Bo L., Wang J. Q., Xiu C., Tang W. J., Shi J. B., Zhou H. P., Liu X. H. (2017) New arylpyrazoline-coumarins: synthesis and anti-inflammatory activity. Eur. J. Med. Chem. 138 170-181.
[13] 13. Coskun D., Erkisa M., Ulukaya E., Coskun M. F., Ari F. (2017) Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Synthesis, characterization and anticancer activity. Eur. J. Med. Chem. 136 212-222
[14] 14. Akhtar J., Khan A. A., Ali Z., Haider R., Yar M. S. (2017) Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem. 125 143-189.
[15] 15. Gujjar R., Marwaha A., White J., White L., Creason S., Shackleford D. M., Baldwin J., Charman W. N., Buckner F. S., Charman S., Rathod P. K., Phillips M. A. (2009) Identification of a metabolically stable triazolopyrimidinebased dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J. Med. Chem. 52 (7) 1864-1872.
[16] 16. Hu Y. Q., Gao C., Zhang S., Xu L., Xu Z., Feng L. S., Wu X., Zhao F. (2017) Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem. 139 22-47.
[17] 17. Wen X., Zhou, Y., Zeng J., Liu X. (2020) Recent development of 1,2,4-triazole-containing compounds as anticancer agents. Curr. Topics. Med. Chem. 20 (16) 1441-1460.
[18] 18. Duran A., Dogan H. N., Rollas H. (2002) Synthesis and preliminary anticancer activity of new 1,4-dihydro-3- (3-hydroxy-2- naphthyl)-4-substituted-5H-1,2,4-triazoline-5-thiones. Farmaco. 57 (7) 559-564.
[19] 19. Dheer D., Singh V., Shankar R. (2017) Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem. 71 30-54.
[20] 20. Peyton L. R., Gallagher S., Hashemzadeh M. (2015) Triazole antifungals: a review. Drugs. Today. 51 (12) 705-718.
[21] 21. Zhou C. H., Wang Y. (2012) Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem. 19 (2) 239-280.
[22] 22. Aggarwal R., Sumran G. (2020) An insight on medicinal attributes of 1,2,4-triazoles. Eur. J. Med. Chem. 1 (205) 112652.
[23] 23. Da Silva F. D. C., De Souza M. C. B. V., Frugulhetti I. I. P., Castro H. C., Souza S. L. D. O., De Souza T. M. L., Rodrigues D. Q., Souza A. M. T., Abreu P. A., Passamani F., Rodrigues C. R., Ferreira V. F. (2009) Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur. J. Med. Chem. 44 (1) 373-383.
[24] 24. Giffin MJ, Heaslet H, Brik A, Lin YC, Cauvi G, Wong CH, McRee DE, Elder JH, Stout CD, Torbett B. E. (2008) A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J. Med. Chem. 51 (20) 6263-6270.
[25] 25. Yu W. J., Rao Q., Wang M., Tian Z., Lin D., Liu X. R., Wang J. X. (2006) The Hsp90 inhibitor 17-allylamide-17-demethoxygeldanamycin induces apoptosis and differentiation of Kasumi-1 harboring the Asn822Lys KIT mutation and down-regulates KIT protein level, Leukemia Res. Leuk. Res. 30 575-582.
[26] 26. Peterson L. B., Blagg S. J. B. (2010) Click chemistry to probe Hsp90: Synthesis and evaluation of a series of triazole-containing novobiocin analogues. Bioorg. Med. Chem. Lett. 20 (13) 3957-3960.
[27] 27. Dehshal N. G., Mamaghani M., Jahanshahi P., Rezaei I (2022) A green synthesis of novel derivatives of thiazole-5-one using magnetic supported copper nanocatalyst (γ-Fe2O3@HAp@CPTMS@AT@Cu(II)). Polycycl. Aromat. Compd. 1-16.
[28] 28. Yang Y., Hu W., Ye X., Wang D., Shi X. (2016) Preparation of triazole gold (III) complex as an effective catalyst for the synthesis of E-α-haloenones. Adv. Synth. Catal. 358 (16) 2583-2588.
[29] 29. Duan H., Sengupta S., Petersen J. L., Akhmedov N. G., Shi X. (2009) Triazole-Au (I) complexes: a new class of catalysts with improved thermal stability and reactivity for intermolecular alkyne hydroamination. J. Am. Chem. Soc. 131 (34) 12100-12102.
[30] 30. Sharma P., Rathod J., Singh A. P., Kumar P., Sasson Y. (2018) Synthesis of heterogeneous Ru (ii)-1, 2, 3-triazole catalyst supported over SBA-15: application to the hydrogen transfer reaction and unusual highly selective 1, 4-disubstituted triazole formation via multicomponent click reaction. Catal. Sci. Technol. 8 (13) 3246-3259.
[31] 31. Rezaei I., Mamaghani M. (2021) An efficient green synthesis of polyfunctional pyrazole-triazole hybrids and bis-triazoles via chromium incorporated fluorapatite encapsulated iron oxide nanocatalyst. Curr. Chem. Lett. 10 (4) 445-458.
[32] 32. Rezaei I., Mamaghani M. (2021) Green synthesis of bis pyrazole-triazole and azo-linked triazole hybrids using an efficient and novel cobalt nanocatalyst. React. Kinet. Mech. Catal. 134 385-400.
[33] 33. Pourkarim Z., Nikpassand M. (2020) Synthesis, characterization and application of Fe3O4@SiO2@ Tannic acid nanoparticles: a novel and magnetically recyclable catalyst for one-pot synthesis of novel 5-pyrazolin-1, 2, 4-triazolidine-3-ones (thiones). J. Mol. Struct. 1217 128433.
[34] 34. Nikpassand M., Farshami M. J. (2021) One-Pot Synthesis of Novel 3-Pyrazolyl-4H-1,2,4-triazoles Using Amino Glucose-Functionalized Silica-Coated NiFe2O4 Nanoparticles as a Magnetically Separable Catalyst. J. Clust. Sci. 32 975–982.
[35] 35. Patil J. D., Pore D. M. (2014) [C16MPy] AlCl3Br: an efficient novel ionic liquid for synthesis of novel 1, 2, 4-triazolidine-3-thiones in water. RSC Adv. 4 (28) 14314-14319.
[36] 36. Yin M., Wang Y., Yu L., Wang H., Zhu Y., Li C., (2020) Ag nanoparticles-modified Fe2O3@MoS2 core-shell micro/nanocomposites for high-performance NO2 gas detection at low temperature. J. Alloys. Compd. 829 154471
[37] 37. Uma K., Muniranthinam E., Chong S., Yang T. C. K., Lin J. H. (2020) Fabrication of hybrid catalyst ZnO nanorod/α-Fe2O3 composites for hydrogen evolution reaction. Crystals 10 (5) 356.
[38] 38. Yang X., Sun H., Zhang L., Zhao L., Lian J., Jiang Q., (2016) High efficient photo-Fenton catalyst of α-Fe2O3/MoS2 hierarchical nanoheterostructures: reutilization for supercapacitors. Sci. Rep. 6 (1) 31591.
[39] 39. Ramesh R., Lalitha A. (2015) PEG-assisted two-component approach for the facile synthesis of 5-aryl-1, 2, 4-triazolidine-3-thiones under catalyst-free conditions. RSC adv. 5 (63) 51188-51192.
[40] 40. Pore D. M., Hegade P. G., Mane M. M., Patil J. D. (2013) The unprecedented synthesis of novel spiro-1, 2, 4-triazolidinones. RSC adv. 3 (48) 25723-25726.
[41] 41. Masram L. B., Salim S. S., Barkule A. B., Gadkari Y. U., Telvekar V. N. (2022) An efficient and expeditious synthesis of 1,2,4-triazolidine-3-thiones using meglumine as a reusable catalyst in water. J. Chem. Sci. 134 94-100.
[42] 42. Korade S. N., Patil J. D., Pore D. M. (2016) Novel task-specific ionic liquid for room temperature synthesis of spiro-1, 2, 4-triazolidine-3-thiones. Monatsh. Chem. 147 2143-2149.