How to cite this paper
Choudhury, A., Nanda, J & Das, S. (2023). The effect of compaction pressure, sintering time, and temperature on the characterization of an aluminum/alumina composite with rising alumina proportions.Current Chemistry Letters, 12(2), 305-316.
Refrences
1. Saber A. F., Sayed M., Tolba M. S., Kamal El-Dean A. M., Hassanien R., and Ahmed M. (2021) A facile method for preparation and evaluation of the antimicrobial efficiency of various heterocycles containing thieno [2, 3-d] pyrimidine. Synth. Commun., 51(3) 398-409.
2. Kamal El-Dean A. M., Zaki R. M., Radwan S. M., and Saber A. F. (2017) Synthesis, reactions and spectral characterization of novel thieno pyrazole derivatives. Eur. Chem. Bull., 6(12) 550-553.
3. Zaki R. M., Kamal El-Dean A. M., Radwan S. M., and Saber A. F. (2019) Efficient synthesis, reactions and spectral characterization of pyrazolo [4’,3’:4,5] thieno[3,2-d] pyrimidines and related heterocycles. Heterocycl. Commun., 25(1) 39–46.
4. Zaki R. M., Kamal El-Dean A. M., Radwan S. M., and Saber A. F. (2018) A Convenient Synthesis, Reactions and Biological Activity of Some New 6H-Pyrazolo [4’,3’:4,5] thieno[3,2-d] [1,2,3] triazine Compounds as Antibacterial, Anti-Fungal and Anti-Inflammatory Agents. J. Braz. Chem. Soc., 29 (12) 2482-2495.
5. Saber A. F., Kamal El‐Dean A. M., Redwan S. M., and Zaki R. M. (2020) Synthesis, spectroscopic characterization, and in vitro antimicrobial activity of fused pyrazolo [4′, 3′: 4, 5] thieno [3, 2‐d] pyrimidine. J. Chin. Chem. Soc., 67(7) 1239-1246.
6. Abdelgalil A., Mustafa A.A., Ali S. A. M., and Yassin O. M. (2022) Effect of irrigation intervals and foliar spray of zinc and silicon treatments on maize growth and yield components of maize. Curr. Chem. Lett., 11(2) 219–226.
7. Taha M.A. (2001) Industrialization of cast aluminum matrix composites (AMMCs). Mater. Manuf. Process,16(5) 619–641.
8. Kim C.S., Cho K., Manjili M.H., and Nezafati M. (2017) Mechanical performance of particulate reinforced Al metal-matrix composites (MMCs) and Al Metal-Matrix Nano-Composites (MMNCs). J. Mater. Sci., 52(23) 13319–13349.
9. Anthony M., Schultz B.F., Rohatgi P.K., and Gupta N. (2014) Metal matrix composites for automotive applications. in: Elmarakbi A. (Ed) Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness. John Wiley & Sons, UK, 313-344.
10. Bhoi N.K., Singh H., and Pratap S. J. (2020) Developments in the aluminum metal matrix composites reinforced by micro/nano particles – a review. Compos. Mater., 54(6) 813–833.
11. Harris S.J. (1990) Developments in Particulate and Short Fiber Composites. AGARD Lectures Series no. 174, New Light Alloys, 4:1-4:21.
12. Prabhu B., Suryanarayana C., An L., and Vaidyanathan R. (2006) Synthesis and characterization of high-volume fraction Al–Al2O3 nanocomposite powders by high-energy milling. Mater. Sci. Eng. A, 425(1-2) 192-200.
13. Kainer K.U. (2006) Metal Matrix Composites. Custom-made Materials for Automotive and Aerospace Engineering, Wiley–VCH, Weinheim.
14. Miracle D.B. (2005) Metal matrix composites—from science to technological significance. Comp. Sci. Technol., 65(15-16) 2526–2540.
15. Slipenyuk A., Kuprin V., Milman Y., Goncharuk V., and Eckert J. (2006) Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio. Acta. Mater., 54(1) 157-166.
16. Alahelisten A., Bergman F., Olsson M., and Hogmark S. (1993) On the wear of aluminum and magnesium metal matrix composites. Wear, 165(2) 221–226.
17. Guo R.Q., and Rohatgi P.K. (1996) Compacting characteristics of aluminum–fly ash powder mixtures. J. Mater. Sci., 31(20) 5513–5519.
18. Guo R.Q., and Rohatgi P.K. (1997) Preparation of aluminum–fly ash particulate composite by powder metallurgy technique. J. Mater. Sci., 32(5) 3971–3974.
19. Rohatgi P.K., Huang P., Guo R., Keshevaram B.N., and Golden D. (1995) Morphology and selected properties of fly ash. in: Malhotra V.M. (Ed) Proceedings of the 5th CANMET/ACI International Conference on Fly Ash Silica Fume Slag and Natural Pozzolans in Concrete. American Concrete Institute, Detroit, MI, 459–478.
20. Judge W.D., Bishop D.P., and Kipouros G.J. (2017) Industrial Sintering Response and Microstructural Characterization of Aluminum Powder Metallurgy Alloy Alumix 123. Metallogr. Microstruct. Anal., 6(5) 375-382.
21. Rao J.B., Rao D.V., Murthy I.N., and Bhargava N.R.M.R. (2012) Mechanical properties and corrosion behavior of fly ash particles reinforced AA 2024 composites. J. Compos. Mater., 46(12) 1393–1404.
22. Slipenyuk A., Kuprin V., Yu M., Spowart J.E., and Miracle D.B. (2004) The effect of matrix to reinforcement particle size ratio (PSR) on the microstructure and mechanical properties of a P/M processed AlCuMn/SiCp MMC. Mater. Sci. Eng. A, 381(1-2) 165-170.
23. Sardar S., Karmakar S.K., and Das D. (2015) Evaluation of Abrasive Wear Resistance of Al2O3/7075 Composite by Taguchi Experimental Design Technique. Trans. Indian. Instit. Met., 71(8) 1847–1858.
24. Poria S., Sahoo P., and Sutradhar G. (2016) Tribological characterization of stir-cast aluminium-TiB2 metal matrix composites. Silicon, 8(4) 591–599.
25. Soltani S., Khosroshahi R.A., Mousavian R.T., Jiang Z.Y., Boostani A.F., and Brabazon D. (2017) Stir casting process for manufacture of Al–SiC composites. Rare. Met., 36(7) 581–590.
26. Verma A.S., Suman K., and Suri N.M. (2015) Corrosion behavior of aluminum base particulate metal matrix composites: a review. Mater. Today Proc., 2(4-5) 2840–2851.
27. Abdizadeh H., and Baghchesara M.A. (2017) Optimized Parameters for Enhanced Properties in Al–B4C Composite. Arab J. Sci. Eng., 43(9) 4475–4485.
28. Samal P., Vundavilli P.R., Meher A., and Mahapatra M.M. (2020) Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties. J. Manuf. Process, 59 131–152.
29. Pilania G., Thijsse B.J., Hoagland R.G., Lazić I., Valone, S. M., and Liu X. Y. (2014) Revisiting the Al/Al2O3 interface: coherent interfaces and misfit accommodation. Sci. Rep., 4(1) 1–9.
30. Iqbal A.K.M.A., and Nuruzzaman D.M. (2016) Effect of the reinforcement on the mechanical properties of aluminium matrix composite: a review. Int. J. Appl. Eng. Res., 11(21) 10408–10413.
31. Vani V.V., and Chak S.K. (2018) The effect of process parameters in aluminum metal matrix composites with powder metallurgy. Manuf. Rev., 5(7) 1–13.
32. Abouelmagd G. (2004) Hot deformation and wear resistance of P/M aluminium metal matrix composites. J. Mater. Process. Technol., 155–156 1395–1401.
33. Gudlur P., Boczek A., Radovic M., and Muliana A. (2014) On characterizing the mechanical properties of aluminum-alumina composites. Mater. Sci. Eng. A, 590 352–359.
34. Chen W.H., Lin H.T., Nayak P.K., and Huang J.L. (2014) Material properties of tungsten carbide–alumina composites fabricated by spark plasma sintering. Ceram. Inter., 40(9) 15007–15012.
35. Vogel T., Ma S., Liu Y., Guo Q., and Zhang D. (2020) Impact of alumina content and morphology on the mechanical properties of bulk nano laminated Al2O3-Al composites. Compos. Commun., 22 100462 https://doi.org/10.1016/j.coco.2020.100462
36. Khorshid M.T., Omrani E., Menezes P.L., and Rohatgi P.K. (2016) Tribological performance of self-lubricating aluminum matrix nanocomposites: role of graphene nanoplatelets. Eng. Sci. Technol. Int. J., 19(1) 463–469.
37. Bains P.S., Sidhu S.S., and Payal H.S. (2016) Fabrication and machining of metal matrix composites: a review. Mater. Manuf. Process, 31(5) 553–573.
38. Kim S., Joung C., Kim H., Na S.H., Lee Y., and Sohn D. (2002) Resintering Behavior in Oxidatively Sintered UO2 and UO2-5wt%CeO2 Pellet. J. Nucl. Sci. Technol., 39(sup3) 697-700.
39. Manik M. K., Shing M. B., and Vhagat V. (2022) Laboratory Investigation of Composite Made of Alumina Dispersed Aluminum Prepared by UTM Pressed Powder Metallurgy Method. In Smart Technologies for Energy, Environment and Sustainable Development, 1 761-781. Springer, Singapore.
40. German R.M. (1996) Sintering theory and practice, Wiley, New York.
41. Gurbuz M., and Mutuk T. (2017) Effect of process parameters on hardness and microstructure of graphene reinforced titanium composites. Compos. Mater., 0(0) 1–9.
42. Dixit M., and Srivastava R. (2019) The effect of copper granules on interfacial bonding and properties of the copper-graphite composite prepared by flake powder metallurgy. Adv. Powder. Technol., 30(12) 3067-3078.
43. Rahimian M., Ehsani N., Parvin N., and reza Baharvandi H. (2009) The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. J. Mater. Process Technol., 209(14) 5387–5393.
44. Gurbuz M., Can Senel M., and Koç E. (2018) The effect of sintering time, temperature, and graphene addition on the hardness and microstructure of aluminum composites. J. Compos. Mater., 52(4) 553–563.
45. Rahimian M., Ehsani N., Parvin N., and Baharvandi H. R. (2009) The effect of sintering temperature and the amount of reinforcement on the properties of Al–Al2O3 composite. Mater. Des., 30(8) 3333–3337.
46. Umasankar V. (2014) Experimental evaluation of the influence of processing parameters on the mechanical properties of SiC particle reinforced AA6061 aluminium alloy matrix composite by powder processing. J. Alloys Compd., 582 380–386.
47. Tiwari S., Rajput P., and Srivastava S. (2012) Densification Behaviour in the Fabrication of Al-Fe Metal Matrix Composite Using Powder Metallurgy Route. Int. sch. Res. Notices.,2012 https://doi.org/10.5402/2012/195654
48. Burke P., and Kipouros G.J. (2011) Development of Magnesium Powder Metallurgy AZ31 Alloy Using Commercially Available Powders. High. Temp. Mater. Proc., 30 51–61.
49. Saboori A., Novara C., Pavese M., Badini C., Giorgis F., and Fino P. (2017) An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy. J. Mater. Eng. Perform., 26(3) 993–999.
50. Ezatpour H. R., Torabi-Parizi M., and Sajjadi S. A. (2013) Microstructure and mechanical properties of extruded Al/Al2O3 composites fabricated by stir-casting process. Trans. Nonferrous Met. Soc. China, 23(5) 1262−1268.
51. Pournaderi S., and Akhlaghi F. (2017) Wear behaviour of Al6061-Al2O3 composites produced by in-situ powder metallurgy (IPM). Powder Technol., 313 184-190.
52. Mote V. D., Purushotham Y., and Dole B. N. (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys., 6(1) 1-8.