How to cite this paper
Osadchuk, M., Kireeva, N., Korzhenkov, N & Trushin, M. (2021). Silver and gold nanoparticles as an integral part of nanooncology: current state of the problem.Current Chemistry Letters, 10(2), 89-100.
Refrences
1. Siegel R., Naishadham D., and Jemal A. (2012) Cancer statistics. CA Cancer J Clin., 62 (1) 10-29.
2. Bray F., Jemal A., Grey N., Ferlay J., and Forman D. (2012) Global cancer transitions according to the Human Development Index (2008-2030): a population-based study. Lancet Oncol., 13 (8) 790-801.
3. Li J., Chen L., Yan L., Gu Z., Chen Z., Zhang A., and Zhao F. (2019) A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C82(OH)22. Mol Basel Switz., 24 (13) 2387.
4. Zhang Y., Li N., Suh H., and Irvine D. J. (2018) Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. Nat Commun., 9 (1) 6.
5. Xu J., Han W., Jia T., Dong S., Bi H., Yang D., He F., Dai Y., Gai S., and Yang P. (2018) Bioresponsive upconversion nanostructure for combinatorial bioimaging and chemo-photothermal synergistic therapy. Chem Eng J., 342 (342) 446-457.
6. Zhang Y., Yang D., Chen H., Lim W. Q., Phua F. S. Z., An G., Yang P., and Zhao Y. (2018) Reduction-sensitive fluorescence enhanced polymeric prodrug nanoparticles for combinational photothermal-chemotherapy. Biomaterials, 163 14-24.
7. Zottel A., Videtič Paska A., and Jovčevska I. (2019) Nanotechnology Meets Oncology: Nanomaterials in Brain Cancer Research, Diagnosis and Therapy. Mater Basel Switz., 12 (10) 1588.
8. Buzea C., Pacheco I. I., and Robbie K. (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2 (4) MR17-71.
9. Saravanan M., Asmalash T., Gebrekidan A., Gebreegziabiher D., Araya T., Hilekiros H., Barabadi H., and Ramanathan K. (2018) Nano-Medicine as a Newly Emerging Approach to Combat Human Immunodeficiency Virus (HIV). Pharm Nanotechnol., 6 (1) 17-27.
10. Barabadi H., Mahjoub M.A., Tajani B., Ahmadi A., Junejo Y., and Saravanan M. (2019) Emerging Theranostic Biogenic Silver Nanomaterials for Breast Cancer: A Systematic Review. J Clust Sci., 30 (2) 259-279.
11. Ovais M., Khalil A. T., Raza A., Islam N. U., Ayaz M., Saravanan M., Ali M., Ahmad I., Shahid M., and Shinwari Z. K. (2018) Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles. Appl Microbiol Biotechnol., 102 (10) 4393-4408.
12. Freitas R. A. (2005) What is nanomedicine? Nanomedicine Nanotechnol Biol Med., 1 (1) 2-9.
13. Löhr M., van der Wijngaart W., Fagerberg B. (2017) Nanoparticles for cancer therapy. Lakartidningen, 3 (2017) 114.
14. Barabadi H., Najafi M., Samadian H., Azarnezhad A., Vahidi H., Mahjoub M. A., Koohiyan M., and Ahmadi A. (2019) A Systematic Review of the Genotoxicity and Antigenotoxicity of Biologically Synthesized Metallic Nanomaterials: Are Green Nanoparticles Safe Enough for Clinical Marketing? Med Kaunas Lith., 55 (8) 439-444.
15. Wang Y., and Xia Y. (2004) Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals. Nano Lett., 4 (10) 2047-2050.
16. Ghasemi A., Rabiee N., Ahmadi S., Hashemzadeh S., Lolasi F., Bozorgomid M., Kalbasi A., Nasseri B., Shiralizadeh Dezfuli A., Aref A. R., Karimi M., and Hamblin M. R. (2018) Optical assays based on colloidal inorganic nanoparticles. The Analyst, 143 (14) 3249-3283
17. Li C., Li D., Wan G., Xu J., and Hou W. (2011) Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls. Nanoscale Res Lett., 6 (1) 440.
18. Sivaraman S. K., Kumar S., and Santhanam V. (2011) Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method--the role of chloroauric acid. J Colloid Interface Sci., 361 (2) 543-547.
19. Kimling J., Maier M., Okenve B., Kotaidis V., Ballot H., and Plech A. (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B., 110 (32) 15700-15707.
20. Jana N. R., Gearheart L., and Murphy C. J. (2001) Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Adv Mater., 13 (18) 1389-1393.
21. Fleming D. A., and Williams M. E. (2004) Size-controlled synthesis of gold nanoparticles via high-temperature reduction. Langmuir ACS J Surf Colloids., 20 (8) 3021-3023.
22. Ji X., Song X., Li J., Bai Y., Yang W., and Peng X. (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc., 129 (45) 13939-13948.
23. Gutiérrez-Wing C., Esparza R., Vargas-Hernández C., Fernández García M. E., and José-Yacamán M. (2012) Microwave-assisted synthesis of gold nanoparticles self-assembled into self-supported superstructures. Nanoscale, 4 (7) 2281-2287.
24. Yang S., Wang Y., Wang Q., Zhang R., and Ding B. (2007) UV irradiation induced formation of Au nanoparticles at room temperature: The case of pH values. Colloids Surf -Physicochem Eng Asp - COLLOID Surf A., 301 (1) 174-183.
25. Barabadi H., Honary S., Ebrahimi P., Alizadeh A., Naghibi F., and Saravanan M. (2019) Optimization of myco-synthesized silver nanoparticles by response surface methodology employing Box-Behnken design. Inorg Nano-Met Chem., 49 (2) 33-43.
26. Barabadi H. (2017) Nanobiotechnology: A promising scope of gold biotechnology. Cell Mol Biol Noisy--Gd Fr., 63 (12) 3-4.
27. Barabadi H., Kobarfard F., and Vahidi H. (2018) Biosynthesis and Characterization of Biogenic Tellurium Nanoparticles by Using Penicillium chrysogenum PTCC 5031: A Novel Approach in Gold Biotechnology. Iran J Pharm Res IJPR., 17 (Suppl2) 87-97.
28. Singh M., Harris-Birtill D. C. C., Markar S. R., Hanna G. B., and Elson D. S. (2015) Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review. Nanomedicine Nanotechnol Biol Med., 11 (8) 2083-2098.
29. Rivas L., Sanchez-Cortes S., García-Ramos J. V., and Morcillo G. (2000) Mixed Silver/Gold Colloids: A Study of Their Formation, Morphology, and Surface-Enhanced Raman Activity. Langmuir, 16(25) 9722-9728.
30. Lu L., Wang H., Zhou Y., Xi S., Zhang H., Hu J. and Zhao B. (2002) Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. Chem Commun Camb Engl., 2002 (2) 144-145.
31. Doria G., Larguinho M., Dias J. T., Pereira E., Franco R., and Baptista P. V. (2010) Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection. Nanotechnology, 21 (25) 255101.
32. Sotiriou G. A., Etterlin G. D., Spyrogianni A., Krumeich F., Leroux J-C., and Pratsinis S. E. (2014) Plasmonic biocompatible silver-gold alloyed nanoparticles. Chem Commun Camb Engl., 50 (88) 13559-13562.
33. Bhatia S. (2016) Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications. Natural Polymer Drug Delivery Systems, Springer, Berlin.
34. Johnston R. L., and Wilcoxon J. P. (2012) Metal Nanoparticles and Nanoalloys, Vol 3, 1st Edition, Elsevier, Amsterdam.
35. De Jong W. H., and Borm P. J. A. (2008) Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine., 3 (2) 133-149.
36. Gaumet M., Vargas A., Gurny R., and Delie F. (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV., 69 (1) 1-9.
37. Kumar C. S. S. R., ed. (2013) Geometrically Tunable Optical Properties of Metal Nanoparticles. UV–VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization, Springer, Berlin.
38. Joshi M., Bhattacharyya A., and Ali S. W. (2008) Characterization techniques for nanotechnology applications in textiles. IJFTR., 33 (3) 304-317.
39. Zheng T., Bott S., and Huo Q. (2016) Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation. ACS Appl Mater Interfaces., 8 (33) 21585-21594.
40. Chu B., and Liu T. (2000) Characterization of Nanoparticles by Scattering Techniques. J Nanoparticle Res., 2 (1) 29-41.
41. Lin P-C., Lin S., Wang P. C., and Sridhar R. (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv., 32 (4) 711-726.
42. Bootz A., Vogel V., Schubert D., and Kreuter J. (2004) Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV., 57 (2) 369-375.
43. Zhang X-F., Liu Z-G., Shen W., and Gurunathan S. (2016) Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci., 17 (9) 1468.
44. Caputo F., De Nicola M., and Ghibelli L. (2014) Pharmacological potential of bioactive engineered nanomaterials. Biochem Pharmacol., 92 (1) 112-130.
45. Chugh H., Sood D., Chandra I., Tomar V., Dhawan G., and Chandra R. (2018) Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells Nanomedicine Biotechnol., 46 (sup1) 1210-1220.
46. Greulich C., Diendorf J., Simon T., Eggeler G., Epple M., and Köller M. (2011) Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater., 7 (1) 347-354.
47. Jeyaraj M., Sathishkumar G., Sivanandhan G., MubarakAli D., Rajesh M., Arun R., Kapildev G., Manickavasagam M., Thajuddin N., Premkumar K., and Ganapathi A. (2013) Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf B Biointerfaces., 106 86-92.
48. Kovács D., Igaz N., Marton A., Rónavári A., Bélteky P., Bodai L., Spengler G., Tiszlavicz L., Rázga Z., Hegyi P., Vizler C., Boros I. M., Kónya Z., and Kiricsi M. (2020) Core-shell nanoparticles suppress metastasis and modify the tumour-supportive activity of cancer-associated fibroblasts. J Nanobiotechnology., 18 (1) 18.
49. Liu F., Mahmood M., Xu Y., Watanabe F., Biris A. S., Hansen D. K., Inselman A., Casciano D., Patterson T. A., Paule M. G., Slikker W. Jr., and Wang C. (2015) Effects of silver nanoparticles on human and rat embryonic neural stem cells. Front Neurosci., 9 (2015) 115.
50. Zhang X-F., Shen W., and Gurunathan S. (2016) Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model. Int J Mol Sci., 17 (10) 1603.
51. Park E-J., Yi J., Kim Y., Choi K., and Park K. (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol Vitro Int J Publ Assoc BIBRA., 24 (3) 872-878.
52. Riaz Ahmed K. B., Nagy A. M., Brown R. P., Zhang Q., Malghan S. G., and Goering P. L. (2017) Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol Vitro Int J Publ Assoc BIBRA., 38 179-192.
53. Carlson C., Hussain S. M., Schrand A. M., Braydich-Stolle L. K., Hess K. L., Jones R. L., and Schlager J. J. (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B., 112 (43) 13608-13619.
54. Gurunathan S., Lee K-J., Kalishwaralal K., Sheikpranbabu S., Vaidyanathan R., and Eom S. H. (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials, 30 (31) 6341-6350.
55. Asharani P. V., Hande M. P., and Valiyaveettil S. (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol., 10 (2009) 65.
56. Mukherjee P., Bhattacharya R., Wang P., Wang L., Basu S., Nagy J. A., Atala A., Mukhopadhyay D., and Soker S. (2005) Antiangiogenic properties of gold nanoparticles. Clin Cancer Res Off J Am Assoc Cancer Res., 11 (9) 3530-3534.
57. Zhang Y., Ren K., Zhang X., Chao Z., Yang Y., Ye D., Dai Z., Liu Y., and Ju H. (2018) Photo-tearable tape close-wrapped upconversion nanocapsules for near-infrared modulated efficient siRNA delivery and therapy. Biomaterials, 163 55-66.
58. Liu H., Li W., Cao Y., Guo Y., and Kang Y. (2018) Theranostic nanoplatform based on polypyrrole nanoparticles for photoacoustic imaging and photothermal therapy. J Nanoparticle Res., 20 (3) 57.
59. Norouzi H., Khoshgard K., and Akbarzadeh F. (2018) In vitro outlook of gold nanoparticles in photo-thermal therapy: a literature review. Lasers Med Sci., 33 (4) 917-926.
60. Zhou G., Xiao H., Li X., Huang Y., Song W., Song L., Chen M., Cheng D., and Shuai X. (2017) Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging. Acta Biomater., 64 223-236.
61. Chauhan G., Chopra V., Tyagi A., Rath G., Sharma R. K., and Goyal A. K. (2017) “Gold nanoparticles composite-folic acid conjugated graphene oxide nanohybrids” for targeted chemo-thermal cancer ablation: In vitro screening and in vivo studies. Eur J Pharm Sci Off J Eur Fed Pharm Sci., 96 351-361.
62. Hirschberg H., and Madsen S. J. (2017) Cell Mediated Photothermal Therapy of Brain Tumors. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol., 12 (1) 99-106.
63. Sivakumar A.S., Krishnaraj C., Sheet S., Rampa D. R., Kang D. R., Belal S. A., Kumar A., Hwang I. H., Yun S. I., Lee Y. S., and Shim K. S. (2017) Interaction of silver and gold nanoparticles in mammalian cancer: as real topical bullet for wound healing- A comparative study. In Vitro Cell Dev Biol Anim., 53 (7) 632-645.
64. Sengupta M., Pal R., Nath A., Chakraborty B., Singh L. M., Das B., and Ghosh S. K. (2018) Anticancer efficacy of noble metal nanoparticles relies on reprogramming tumor-associated macrophages through redox pathways and pro-inflammatory cytokine cascades. Cell Mol Immunol., 15 (12) 1088-1090.
65. Pal R., Chakraborty B., Nath A., Singh L. M., Ali M., Rahman D. S., Ghosh S. K., Basu A., Bhattacharya S., Baral R., and Sengupta M. (2016) Noble metal nanoparticle-induced oxidative stress modulates tumor associated macrophages (TAMs) from an M2 to M1 phenotype: An in vitro approach. Int Immunopharmacol., 38 332-341.
66. Shanmugasundaram T., Radhakrishnan M., Gopikrishnan V., Kadirvelu K., and Balagurunathan R. (2017) Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: in vitro and in vivo perspectives. Nanoscale, 9 (43) 16773-16790.
67. Fiori M. E., Di Franco S., Villanova L., Bianca P., Stassi G., and De Maria R. (2019) Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer., 18 (1) 70.
68. Li W., Zhang X., Wang J., Li M., Cao C., Tan J., Ma D., and Gao Q. (2017) TGFβ1 in fibroblasts-derived exosomes promotes epithelial-mesenchymal transition of ovarian cancer cells. Oncotarget, 8 (56) 96035-96047.
69. Richards K. E., Zeleniak A. E., Fishel M. L., Wu J., Littlepage L. E., and Hill R. (2017) Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene, 36 (13) 1770-1778.
70. Ireland L.V., and Mielgo A. (2018) Macrophages and Fibroblasts, Key Players in Cancer Chemoresistance. Front Cell Dev Biol., 6 (2108) 131.
71. Peukert D., Kempson I., Douglass M., and Bezak E. (2018) Metallic nanoparticle radiosensitisation of ion radiotherapy: A review. Phys Medica PM Int J Devoted Appl Phys Med Biol Off J Ital Assoc Biomed Phys AIFB., 47 (2018) 121-128.
72. Maeda H. (2010) Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem., 21 (5) 797-802.
73. Matsumura Y., and Maeda H. (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 46 (12 Pt 1) 6387-6392.
74. Kommareddy S., Tiwari S. B., and Amiji M. M. (2005) Long-circulating polymeric nanovectors for tumor-selective gene delivery. Technol Cancer Res Treat., 4 (6) 615-625.
75. Sykes P. D., Neoptolemos J. P., Costello E., and Halloran C. M. (2012) Nanotechnology advances in upper gastrointestinal, liver and pancreatic cancer. Expert Rev Gastroenterol Hepatol., 6 (3) 343-356.
76. Yuan F., Dellian M., Fukumura D., Leunig M., Berk D. A., Torchilin V. P., and Jain R. K. (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res., 55 (17) 3752-3756.
77. Firth J. A. (2002) Endothelial barriers: from hypothetical pores to membrane proteins. J Anat., 200 (6) 541-548.
78. Perrault S. D., Walkey C., Jennings T., Fischer H. C., and Chan W. C. W. (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett., 9 (5) 1909-1915.
79. Hobbs S. K., Monsky W. L., Yuan F., Roberts W. G., Griffith L., Torchilin V. P., and Jain R. K. (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A., 95 (8) 4607-4612.
80. Hu Z., Huo F., Zhang Y., Chen C., Tu K., Wang H. J. and Wang L-Q. (2011) “Smart” Nanocarriers: A New Paradigm for Tumor Targeting Drug Delivery Systems. Drug Deliv Lett., 1 (1) 67.
81. Zhang C-L., Lv K-P., Cong H-P., and Yu S-H. (2020) Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning. Small Weinh Bergstr Ger., 16 (2) e1904785.
82. Tian G., Zhang X., Gu Z., and Zhao Y. (2015) Recent Advances in Upconversion Nanoparticles-Based Multifunctional Nanocomposites for Combined Cancer Therapy. Adv Mater Deerfield Beach Fla., 27 (47) 7692-7712.
83. Zhao X., Qi T., Kong C., Hao M., Wang Y., Li J., Liu B., Gao Y., and Jiang J. (2018) Photothermal exposure of polydopamine-coated branched Au-Ag nanoparticles induces cell cycle arrest, apoptosis, and autophagy in human bladder cancer cells. Int J Nanomedicine., 13 (2018) 6413-6428.
84. Liu J., Zheng X., Yan L., Zhou L., Tian G., Yin W., Wang L., Liu Y., Hu Z., Gu Z., Chen C., and Zhao Y. (2015) Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS Nano., 9 (1) 696-707.
85. Norman R. S., Stone J. W., Gole A., Murphy C .J., and Sabo-Attwood T. L. (2008) Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett., 8 (1) 302-306.
86. Shi J., Wang L., Zhang J., Ma R., Gao J., Liu Y., Zhang C., and Zhang Z. (2014) A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials, 35 (22) 5847-5861.
87. Guo F., Yu M., Wang J., Tan F., and Li N. (2015) Smart IR780 Theranostic Nanocarrier for Tumor-Specific Therapy: Hyperthermia-Mediated Bubble-Generating and Folate-Targeted Liposomes. ACS Appl Mater Interfaces., 7 (37) 20556-20567.
88. Sheng W., He S., Seare W.J., and Almutairi A. (2017) Review of the progress toward achieving heat confinement-the holy grail of photothermal therapy. J Biomed Opt., 22 (8) 80901.
89. Nima Z. A., Mahmood M., Xu Y., Mustafa T., Watanabe F., Nedosekin D. A., Juratli M. A., Fahmi T., Galanzha E. I., Nolan J. P., Basnakian A. G., Zharov V. P., and Biris A. S. (2014) Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci Rep., 4 (2014) 4752.
90. Nikoobakht B., Wang J., and El-Sayed M. (2002) Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: Off-surface plasmon resonance condition. Chem Phys Lett., 366 (1) 17-23.
91. Zhang J., Wang M., and Webster T. J. (2018) Silver-coated gold nanorods as a promising antimicrobial agent in the treatment of cancer-related infections. Int J Nanomedicine., 13 (2018) 6575-6583.
92. Rajkumar S., and Prabaharan M. (2017) Theranostics Based on Iron Oxide and Gold Nanoparticles for Imaging- Guided Photothermal and Photodynamic Therapy of Cancer. Curr Top Med Chem., 17 (16) 1858-1871.
93. Ungureanu C., Kroes R., Petersen W, Groothuis T. A. M., Ungureanu F., Janssen H., van Leeuwen F. W. B, Kooyman R. P. H., Manohar S., and van Leeuwen T. G. (2011) Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics. Nano Lett., 11 (5) 1887-1894.
94. Liang S., Li C., Zhang C., Chen Y., Xu L., Bao C., Wang X., Liu G., Zhang F. and Cui D.. (2015) CD44v6 Monoclonal Antibody-Conjugated Gold Nanostars for Targeted Photoacoustic Imaging and Plasmonic Photothermal Therapy of Gastric Cancer Stem-like Cells. Theranostics, 5 (9) 970-984.
95. Li J., Wang W., Zhao L., Rong L., Lan S., Sun H., Zhang H., and Yang B. (2015) Hydroquinone-assisted synthesis of branched au-ag nanoparticles with polydopamine coating as highly efficient photothermal agents. ACS Appl Mater Interfaces., 7 (21) 11613-11623.
96. Chow J. C. L. (2017) Dose enhancement effect in radiotherapy: adding gold nanoparticles to tumor in cancer treatment. In: Ficai A., and Grumezescu A. M., eds. Nanostructures for Cancer Therapy. Elsevier, Amsterdam.
97. Stobiecka M., Ratajczak K., and Jakiela S. (2019) Toward early cancer detection: Focus on biosensing systems and biosensors for an anti-apoptotic protein survivin and survivin mRNA. Biosens Bioelectron., 137 (2019) 58-71.
98. Chow J. C. L. (2016) Photon and electron interactions with gold nanoparticles: A Monte Carlo study on gold nanoparticle-enhanced radiotherapy. In: Grumezescu A. M., ed. Nanobiomaterials in Medical Imaging. William Andrew Publishing, Norwich.
99. Cai Q. Y., Kim S. H., Choi K. S., Kim S. Y., Byun S. J., Kim K. W., Park S. H., Juhng S. K., and Yoon K. H. (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol., 42 (12) 797-806.
100. Rogers D. W. O. (2002) Monte Carlo Techniques in Radiotherapy. Phys Can., 58 (2) 63-70.
101. Cormode D. P., Naha P. C., and Fayad Z. A. (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging., 9 (1) 37-52.
102. Abdulle A., and Chow J. C. L. (2019) Contrast Enhancement for Portal Imaging in Nanoparticle-Enhanced Radiotherapy: A Monte Carlo Phantom Evaluation Using Flattening-Filter-Free Photon Beams. Nanomater Basel Switz., 9 (7) 920.
103. Oberdörster G. (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med., 267 (1) 89-105.
104. Xie H., Mason M. M., and Wise J. P. (2011) Genotoxicity of metal nanoparticles. Rev Environ Health., 26 (4) 251-268.
105. Seukep A. J., Noumedem J. A. K., Djeussi D. E., and Kuete V. (2014) 9 - Genotoxicity and Teratogenicity of African Medicinal Plants. In: Kuete V., ed. Toxicological Survey of African Medicinal Plants. Elsevier, Amsterdam.
106. Mohamed S., Sabita U., Rajendra S., and Raman D. (2017) Genotoxicity: Mechanisms, Testing Guidelines and Methods. Glob J Pharmaceu Sci. 1 (5) 1-6.
107. Rama R. P., Kaul C. L., and Jena G. B. (2002) Genotoxicity testing, a regulatory requirement for drug discovery and development: Impact of ICH guidelines. Indian J Pharmacol.,34 (2) 86.
108. Amoabediny G. H., Naderi A., Malakootikhah J., Koohi M. K., Mortazavi S. A., Naderi M. and Rashedi H. (2009) Guidelines for safe handling, use and disposal of nanoparticles. J Phys Conf Ser., 170 (2009) 012037.
109. Magdolenova Z., Collins A., Kumar A., Dhawan A., Stone V., and Dusinska M. (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology, 8 (3) 233-278.
110. Mahaye N., Thwala M., Cowan D. A., and Musee N. (2017) Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review. Mutat Res., 773 (2017) 134-160.
111. Barabadi H., Alizadeh A., Ovais M., Ahmadi A., Shinwari Z. K., and Saravanan M. (2018) Efficacy of green nanoparticles against cancerous and normal cell lines: a systematic review and meta-analysis. IET Nanobiotechnol., 12 (4) 377-391.
112. Stone V., Johnston H., and Schins R. P. F. (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol., 39 (7) 613-626.
113. Sharifi S., Behzadi S., Laurent S., Forrest M. L., Stroeve P., and Mahmoudi M. (2012) Toxicity of nanomaterials. Chem Soc Rev., 41 (6) 2323-2343.
114. Mody V. V., Siwale R., Singh A., and Mody H. R. (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci., 2 (4) 282-289.