How to cite this paper
Hartati, Y., Yusup, S., Fitrilawati, F., Wyantuti, S., Sofiatin, Y & Gaffar, S. (2020). A voltammetric epithelial sodium channels immunosensor using screen printed carbon electrode modified with reduced graphene oxide.Current Chemistry Letters, 9(4), 151-160.
Refrences
1. Hosohata, K., Yoshioka, D., Tanaka, A., Ando, H., & Fujimura, A. (2016). Early urinary biomarkers for renal tubular damage in spontaneously hypertensive rats on a high salt intake. Hypertens Res, 39(1), 19.
2. HERLITZ, H., DAHLÖF, B., JONSSON, O., & FRIBERG, P. (1998). Relationship between salt and blood pressure in hypertensive patients on chronic ACE-inhibition. Blood pressure, 7(1), 47-52.
3. Soundararajan, R., Pearce, D., Hughey, R. P., & Kleyman, T. R. (2010). Role of epithelial sodium channels and their regulators in hypertension. J Biol Chem, 285(40), 30363-30369.
4. Su, Y. R., & Menon, A. G. (2001). Epithelial sodium channels and hypertension. Drug metab dispos, 29(4), 553-556.
5. Hanukoglu, I., & Hanukoglu, A. (2016). Epithelial sodium channel (ENaC) family: phylogeny, structure–function, tissue distribution, and associated inherited diseases. Gene, 579(2), 95-132.
6. Sofiatin, Y., & Roesli, R. M. (2018). Detection of Urinary Epithelial Sodium Channel (ENaC) Protein. Am J Clin Med Res, 6(2), 20-23.
7. Rajesh, S., & Singal, R. K. (2017). Single Frequency Impedance Analysis on Reduced Graphene Oxide Screen-Printed Electrode for Biomolecular Detection. Appl biochem biotech, 183(2), 672-683.
8. Tuteja, S. K., Ormsby, C., & Neethirajan, S. (2018). Noninvasive label-free detection of cortisol and lactate using graphene embedded screen-printed electrode. Nano-micro lett, 10(3), 41.
9. Chan, K. F., Lim, H. N., Shams, N., Jayabal, S., Pandikumar, A., & Huang, N. M. (2016). Fabrication of graphene/gold-modified screen-printed electrode for detection of carcinoembryonic antigen. Mater Sci Eng C, 58, 666-674.
10. Wahyuni, H. Y., Misonia, B. S. U., Santhy, W., & Shabarni, G. (2018). A voltammetric immunosensor for detection of HER2 using gold modified-screen printed carbon electrode. Res J Chem Environ, 22(Special issue II), 294–301.
11. Hartati,Y.W., Nurdjanah, D., Wyantuti, S., Anggraeni, A., & Gaffar, S. (2018). Gold nanoparticles modified screen-printed immunosensor for cancer biomarker HER2 determination based on anti HER2 bioconjugates, AIP Conference Proceedings 2049, 1, 020051.
12. Calvo, A. S., Botas, C., Martín-Yerga, D., Álvarez, P., Menéndez, R., & Costa-García, A. (2015). Comparative study of screen-printed electrodes modified with graphene oxides reduced by a constant current. J Electrochem Soc, 162(10), B282-B290.
13. Teng, Y., Chen, T., Xu, F., Zhao, W., & Liu, W. (2016). Screen-printed Carbon Electrode Modified with Commercial Multilayer Graphene for Lead Detection in Soybean Sauces by Differential Pulse Stripping Voltammetry. Int. J. Electrochem. Sci, 11, 1907-1917.
14. Jampasa, S., Siangproh, W., Duangmal, K., & Chailapakul, O. (2016). Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages. Talanta, 160, 113-124.
15. Xuan, X., Yoon, H. S., & Park, J. Y. (2018). A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens Bioelectron, 109, 75-82.
16. Kanyong, P., Rawlinson, S., & Davis, J. (2016). A voltammetric sensor based on chemically reduced graphene oxide-modified screen-printed carbon electrode for the simultaneous analysis of uric acid, ascorbic acid and dopamine. Chemosensors, 4(4), 25.
17. Lu, Y., Huang, Y., Li, S., Zhang, Q., Wu, J., Xiong, Z., ... & Liu, Q. (2017). Fat taste detection with odorant-binding proteins (OBPs) on screen-printed electrodes modified by reduced graphene oxide. Sensor acuat B- Chem, 252, 973-982.
18. Mehta, J., Vinayak, P., Tuteja, S. K., Chhabra, V. A., Bhardwaj, N., Paul, A. K., ... & Deep, A. (2016). Graphene modified screen printed immunosensor for highly sensitive detection of parathion. Biosens Bioelectron, 83, 339-346.
19. Parkash, O., Yean, C., & Shueb, R. (2014). Screen printed carbon electrode based electrochemical immunosensor for the detection of dengue NS1 antigen. Diagnostics, 4(4), 165-180.
20. Miller, J.N., & Miller, J.C. (2010) Statistics and chemometrics for analytical chemistry, 6th Ed. Pearson Education Limited, England.
21. Hartati, Y. W., Letelay, L. K., Gaffar, S., Wyantuti, S., & Bahti, H. H. (2020). Cerium oxide-monoclonal antibody bioconjugate for electrochemical immunosensing of HER2 as a breast cancer biomarker. Sens Biosensing Res, 27. https://doi.org/10.1016/j.sbsr.2019.100316.
2. HERLITZ, H., DAHLÖF, B., JONSSON, O., & FRIBERG, P. (1998). Relationship between salt and blood pressure in hypertensive patients on chronic ACE-inhibition. Blood pressure, 7(1), 47-52.
3. Soundararajan, R., Pearce, D., Hughey, R. P., & Kleyman, T. R. (2010). Role of epithelial sodium channels and their regulators in hypertension. J Biol Chem, 285(40), 30363-30369.
4. Su, Y. R., & Menon, A. G. (2001). Epithelial sodium channels and hypertension. Drug metab dispos, 29(4), 553-556.
5. Hanukoglu, I., & Hanukoglu, A. (2016). Epithelial sodium channel (ENaC) family: phylogeny, structure–function, tissue distribution, and associated inherited diseases. Gene, 579(2), 95-132.
6. Sofiatin, Y., & Roesli, R. M. (2018). Detection of Urinary Epithelial Sodium Channel (ENaC) Protein. Am J Clin Med Res, 6(2), 20-23.
7. Rajesh, S., & Singal, R. K. (2017). Single Frequency Impedance Analysis on Reduced Graphene Oxide Screen-Printed Electrode for Biomolecular Detection. Appl biochem biotech, 183(2), 672-683.
8. Tuteja, S. K., Ormsby, C., & Neethirajan, S. (2018). Noninvasive label-free detection of cortisol and lactate using graphene embedded screen-printed electrode. Nano-micro lett, 10(3), 41.
9. Chan, K. F., Lim, H. N., Shams, N., Jayabal, S., Pandikumar, A., & Huang, N. M. (2016). Fabrication of graphene/gold-modified screen-printed electrode for detection of carcinoembryonic antigen. Mater Sci Eng C, 58, 666-674.
10. Wahyuni, H. Y., Misonia, B. S. U., Santhy, W., & Shabarni, G. (2018). A voltammetric immunosensor for detection of HER2 using gold modified-screen printed carbon electrode. Res J Chem Environ, 22(Special issue II), 294–301.
11. Hartati,Y.W., Nurdjanah, D., Wyantuti, S., Anggraeni, A., & Gaffar, S. (2018). Gold nanoparticles modified screen-printed immunosensor for cancer biomarker HER2 determination based on anti HER2 bioconjugates, AIP Conference Proceedings 2049, 1, 020051.
12. Calvo, A. S., Botas, C., Martín-Yerga, D., Álvarez, P., Menéndez, R., & Costa-García, A. (2015). Comparative study of screen-printed electrodes modified with graphene oxides reduced by a constant current. J Electrochem Soc, 162(10), B282-B290.
13. Teng, Y., Chen, T., Xu, F., Zhao, W., & Liu, W. (2016). Screen-printed Carbon Electrode Modified with Commercial Multilayer Graphene for Lead Detection in Soybean Sauces by Differential Pulse Stripping Voltammetry. Int. J. Electrochem. Sci, 11, 1907-1917.
14. Jampasa, S., Siangproh, W., Duangmal, K., & Chailapakul, O. (2016). Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages. Talanta, 160, 113-124.
15. Xuan, X., Yoon, H. S., & Park, J. Y. (2018). A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens Bioelectron, 109, 75-82.
16. Kanyong, P., Rawlinson, S., & Davis, J. (2016). A voltammetric sensor based on chemically reduced graphene oxide-modified screen-printed carbon electrode for the simultaneous analysis of uric acid, ascorbic acid and dopamine. Chemosensors, 4(4), 25.
17. Lu, Y., Huang, Y., Li, S., Zhang, Q., Wu, J., Xiong, Z., ... & Liu, Q. (2017). Fat taste detection with odorant-binding proteins (OBPs) on screen-printed electrodes modified by reduced graphene oxide. Sensor acuat B- Chem, 252, 973-982.
18. Mehta, J., Vinayak, P., Tuteja, S. K., Chhabra, V. A., Bhardwaj, N., Paul, A. K., ... & Deep, A. (2016). Graphene modified screen printed immunosensor for highly sensitive detection of parathion. Biosens Bioelectron, 83, 339-346.
19. Parkash, O., Yean, C., & Shueb, R. (2014). Screen printed carbon electrode based electrochemical immunosensor for the detection of dengue NS1 antigen. Diagnostics, 4(4), 165-180.
20. Miller, J.N., & Miller, J.C. (2010) Statistics and chemometrics for analytical chemistry, 6th Ed. Pearson Education Limited, England.
21. Hartati, Y. W., Letelay, L. K., Gaffar, S., Wyantuti, S., & Bahti, H. H. (2020). Cerium oxide-monoclonal antibody bioconjugate for electrochemical immunosensing of HER2 as a breast cancer biomarker. Sens Biosensing Res, 27. https://doi.org/10.1016/j.sbsr.2019.100316.