Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » International Journal of Industrial Engineering Computations » A hybrid algorithm for unrelated parallel machines scheduling

Journals

  • IJIEC (678)
  • MSL (2637)
  • DSL (606)
  • CCL (460)
  • USCM (1087)
  • ESM (391)
  • AC (543)
  • JPM (215)
  • IJDS (802)
  • JFS (81)

IJIEC Volumes

    • Volume 1 (17)
      • Issue 1 (9)
      • Issue 2 (8)
    • Volume 2 (68)
      • Issue 1 (12)
      • Issue 2 (20)
      • Issue 3 (20)
      • Issue 4 (16)
    • Volume 3 (76)
      • Issue 1 (9)
      • Issue 2 (15)
      • Issue 3 (20)
      • Issue 4 (12)
      • Issue 5 (20)
    • Volume 4 (50)
      • Issue 1 (14)
      • Issue 2 (10)
      • Issue 3 (12)
      • Issue 4 (14)
    • Volume 5 (47)
      • Issue 1 (13)
      • Issue 2 (12)
      • Issue 3 (12)
      • Issue 4 (10)
    • Volume 6 (39)
      • Issue 1 (7)
      • Issue 2 (12)
      • Issue 3 (10)
      • Issue 4 (10)
    • Volume 7 (47)
      • Issue 1 (10)
      • Issue 2 (14)
      • Issue 3 (10)
      • Issue 4 (13)
    • Volume 8 (30)
      • Issue 1 (9)
      • Issue 2 (7)
      • Issue 3 (8)
      • Issue 4 (6)
    • Volume 9 (32)
      • Issue 1 (9)
      • Issue 2 (6)
      • Issue 3 (7)
      • Issue 4 (10)
    • Volume 10 (34)
      • Issue 1 (8)
      • Issue 2 (10)
      • Issue 3 (8)
      • Issue 4 (8)
    • Volume 11 (36)
      • Issue 1 (9)
      • Issue 2 (8)
      • Issue 3 (9)
      • Issue 4 (10)
    • Volume 12 (29)
      • Issue 1 (9)
      • Issue 2 (6)
      • Issue 3 (8)
      • Issue 4 (6)
    • Volume 13 (41)
      • Issue 1 (10)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (13)
    • Volume 14 (50)
      • Issue 1 (11)
      • Issue 2 (15)
      • Issue 3 (9)
      • Issue 4 (15)
    • Volume 15 (55)
      • Issue 1 (19)
      • Issue 2 (15)
      • Issue 3 (12)
      • Issue 4 (9)
    • Volume 16 (27)
      • Issue 1 (12)
      • Issue 2 (15)

Keywords

Supply chain management(156)
Jordan(154)
Vietnam(147)
Customer satisfaction(119)
Performance(108)
Supply chain(105)
Service quality(95)
Tehran Stock Exchange(94)
Competitive advantage(91)
SMEs(85)
Financial performance(81)
optimization(81)
Factor analysis(78)
Job satisfaction(78)
Trust(77)
Knowledge Management(76)
Genetic Algorithm(74)
TOPSIS(73)
Social media(72)
Organizational performance(71)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(52)
Endri Endri(44)
Muhammad Alshurideh(40)
Hotlan Siagian(36)
Muhammad Turki Alshurideh(35)
Jumadil Saputra(35)
Barween Al Kurdi(32)
Hassan Ghodrati(31)
Dmaithan Almajali(30)
Mohammad Khodaei Valahzaghard(30)
Ahmad Makui(30)
Ni Nyoman Kerti Yasa(29)
Basrowi Basrowi(29)
Shankar Chakraborty(29)
Prasadja Ricardianto(28)
Sulieman Ibraheem Shelash Al-Hawary(27)
Ali Harounabadi(26)
Haitham M. Alzoubi(26)


» Show all authors

Countries

Iran(2149)
Indonesia(1208)
India(762)
Jordan(726)
Vietnam(489)
Malaysia(415)
Saudi Arabia(400)
United Arab Emirates(209)
Thailand(142)
China(130)
United States(100)
Turkey(97)
Ukraine(93)
Egypt(86)
Canada(83)
Pakistan(81)
Nigeria(72)
Peru(70)
United Kingdom(69)
Taiwan(65)


» Show all countries

International Journal of Industrial Engineering Computations

ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
Quarterly Publication
Volume 7 Issue 4 pp. 681-702 , 2016

A hybrid algorithm for unrelated parallel machines scheduling Pages 681-702 Right click to download the paper Download PDF

Authors: Mohsen Shafiei Nikabadi, Reihaneh Naderi

DOI: 10.5267/j.ijiec.2016.2.004

Keywords: Scheduling, genetic algorithm, Simulated Annealing, Unrelated parallel machines, Analytic network process

Abstract: In this paper, a new hybrid algorithm based on multi-objective genetic algorithm (MOGA) using simulated annealing (SA) is proposed for scheduling unrelated parallel machines with sequence-dependent setup times, varying due dates, ready times and precedence relations among jobs. Our objective is to minimize makespan (Maximum completion time of all machines), number of tardy jobs, total tardiness and total earliness at the same time which can be more advantageous in real environment than considering each of objectives separately. For obtaining an optimal solution, hybrid algorithm based on MOGA and SA has been proposed in order to gain both good global and local search abilities. Simulation results and four well-known multi-objective performance metrics, indicate that the proposed hybrid algorithm outperforms the genetic algorithm (GA) and SA in terms of each objective and significantly in minimizing the total cost of the weighted function.


How to cite this paper
Nikabadi, M & Naderi, R. (2016). A hybrid algorithm for unrelated parallel machines scheduling.International Journal of Industrial Engineering Computations , 7(4), 681-702.

Refrences
Allahverdi, A., Ng, C. T., Cheng, T. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup times or costs. European Journal of Operational Research, 187(3), 985-1032.
Arjmand, M., & Najafi, A. A. (2015). Solving a multi-mode bi-objective resource investment problem using meta-heuristic algorithms. Advanced Computational Techniques in Electromagnetics, 1, 41-58.
Arnaout, J. P., Musa, R., & Rabadi, G. (2014). A two-stage Ant Colony optimization algorithm to minimize the makespan on unrelated parallel machines—part II: enhancements and experimentations. Journal of Intelligent Manufacturing, 25(1), 43-53.
Arnaout, J. P., Rabadi, G., & Musa, R. (2010). A two-stage ant colony optimization algorithm to minimize the makespan on unrelated parallel machines with sequence-dependent setup times. Journal of Intelligent Manufacturing, 21(6), 693-701.
Arroyo, J. E. C., & Armentano, V. A. (2005). Genetic local search for multi-objective flowshop scheduling problems. European Journal of Operational Research, 167(3), 717-738.
Azizi, V., Jabbari, M., & Kheirkhah, A. S. (2016). M-machine, no-wait flowshop scheduling with sequence dependent setup times and truncated learning function to minimize the makespan. International Journal of Industrial Engineering Computations, 7(2), 309.
Bank, J., & Werner, F. (2001). Heuristic algorithms for unrelated parallel machine scheduling with a common due date, release dates, and linear earliness and tardiness penalties. Mathematical and computer modelling, 33(4), 363-383.
Biskup, D., & Cheng, T. E. (1999). Multiple-machine scheduling with earliness, tardiness and completion time penalties. Computers & operations research, 26(1), 45-57.
Bozorgirad, M. A., & Logendran, R. (2012). Sequence-dependent group scheduling problem on unrelated-parallel machines. Expert Systems with Applications, 39(10), 9021-9030.
Brucker, P. (1998). Scheduling algorithm. Berlin: Springer
Caric, T., & Gold, H. (Eds.). (2008). Vehicle routing problem. Sciyo. com.
Cheng, T. C. E., & Sin, C. C. S. (1990). A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research,47(3), 271-292.
Cochran, J. K., Horng, S. M., & Fowler, J. W. (2003). A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Computers & Operations Research, 30(7), 1087-1102.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons.
Demirkol, E., Mehta, S., & Uzsoy, R. (1998). Benchmarks for shop scheduling problems. European Journal of Operational Research, 109(1), 137-141.
De CM Nogueira, J. P., Arroyo, J. E. C., Villadiego, H. M. M., & Gonçalves, L. B. (2014). Hybrid GRASP heuristics to solve an unrelated parallel machine scheduling problem with earliness and tardiness penalties. Electronic Notes in Theoretical Computer Science, 302, 53-72.
Dubois-Lacoste, J., López-Ibáñez, M., & Stützle, T. (2011). A hybrid TP+ PLS algorithm for bi-objective flow-shop scheduling problems. Computers & Operations Research, 38(8), 1219-1236.
Elhaddad, Y. R. (2012). Combined Simulated Annealing and Genetic Algorithm to Solve Optimization Problems. World Academy of Science, Engineering and Technology, 68, 1508-1510.
Eren, T. (2009). A bicriteria parallel machine scheduling with a learning effect of setup and removal times. Applied Mathematical Modelling, 33(2), 1141-1150.
Fakhrzad, M., Sadeghieh, A., & Emami, L. (2012). A new multi-objective job shop scheduling with setup times using a hybrid genetic algorithm. International Journal of Engineering-Transactions B: Applications, 26(2), 207.
Garey, M. R., & Johnson, D. S. (1976). Scheduling tasks with nonuniform deadlines on two processors. Journal of the ACM (JACM), 23(3), 461-467.
Geramianfar, R., Pakzad, M., Golhashem, H., & Tavakkoli-Moghaddam, R. (2013). A multi-objective hub covering location problem under congestion using simulated annealing algorithm. Uncertain Supply Chain Management, 1(3), 153-164.
Gupta, J. N. D., Ho, J. C., & Webster, S. (2000). Bicriteria optimisation of the makespan and mean flowtime on two identical parallel machines. Journal of the Operational Research Society, 51(11), 1330-1339.
Hassanpour, S. T., Naseri, M. A., & Nahavandi, N. (2015). Solving re-entrant no-wait flow shop scheduling problem. International Journal of Engineering-Transactions C: Aspects, 28(6), 903.
Holland, J. H. (1975). Adaptation in natural and artificial system: an introduction with application to biology, control and artificial intelligence. Ann Arbor, University of Michigan Press.
Ho, J. C., & Chang, Y. L. (1991). A new heuristic for the n-job, M-machine flow-shop problem. European Journal of Operational Research, 52(2), 194-202.
Huo, Y., Leung, J. Y. T., & Zhao, H. (2007). Bi-criteria scheduling problems: Number of tardy jobs and maximum weighted tardiness. European Journal of Operational Research, 177(1), 116-134.
Jolai, F., Asefi, H., Rabiee, M., & Ramezani, P. (2013). Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Scientia Iranica, 20(3), 861-872.
Joo, C. M., & Kim, B. S. (2015). Hybrid genetic algorithms with dispatching rules for unrelated parallel machine scheduling with setup time and production availability. Computers & Industrial Engineering, 85, 102-109.
Kayvanfar, V., Komaki, G. M., Aalaei, A., & Zandieh, M. (2014). Minimizing total tardiness and earliness on unrelated parallel machines with controllable processing times. Computers & Operations Research, 41, 31-43.
Kim, D. W., Kim, K. H., Jang, W., & Chen, F. F. (2002). Unrelated parallel machine scheduling with setup times using simulated annealing. Robotics and Computer-Integrated Manufacturing, 18(3), 223-231.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.
Lam, K., & Xing, W. (1997). New trends in parallel machine scheduling.International Journal of Operations & Production Management, 17(3), 326-338.
Lee, C. H., Liao, C. J., & Chao, C. W. (2014). Unrelated parallel machine scheduling with dedicated machines and common deadline. Computers & Industrial Engineering, 74, 161-168.
Lin, S. W., & Ying, K. C. (2013). Minimizing makespan and total flowtime in permutation flowshops by a bi-objective multi-start simulated-annealing algorithm. Computers & Operations Research, 40(6), 1625-1647.
Lin, S. W., & Ying, K. C. (2014). ABC-based manufacturing scheduling for unrelated parallel machines with machine-dependent and job sequence-dependent setup times. Computers & Operations Research, 51, 172-181.
Lin, Y. K. (2006). Data generation and heuristics for unrelated parallel machine scheduling problems (Vol. 67, No. 11).
Lin, Y. K., & Lin, H. C. (2015). Bicriteria scheduling problem for unrelated parallel machines with release dates. Computers & Operations Research, 64, 28-39.
Logendran, R., McDonell, B., & Smucker, B. (2007). Scheduling unrelated parallel machines with sequence-dependent setups. Computers & Operations Research, 34(11), 3420-3438.
Loukil, T., Teghem, J., & Tuyttens, D. (2005). Solving multi-objective production scheduling problems using metaheuristics. European Journal of Operational Research, 161(1), 42-61.
Majumdar, J., & Bhunia, A. K. (2011). Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times. Journal of Computational and Applied Mathematics, 235(9), 3063-3078.
Pinedo, M. (2002). Scheduling: theory, algorithms, and systems.
Molina-Sánchez, L. P., & González-Neira, E. M. (2016). GRASP to minimize total weighted tardiness in a permutation flow shop environment.International Journal of Industrial Engineering Computations, 7(1), 161.
Radhakrishnan, S., & Ventura, J. A. (2000). Simulated annealing for parallel machine scheduling with earliness-tardiness penalties and sequence-dependent set-up times. International Journal of Production Research,38(10), 2233-2252.
Ruiz, R., & Andrés, C. (2007). Scheduling unrelated parallel machines with resource-assignable sequence dependent setup times. Technical Report DEIOAC-2007-01, Universidad Politécnica de Valencia.
Sarrafha, K., Kazemi, A., & Alinezhad, A. (2014). A multi-objective evolutionary approach for integrated production-distribution planning problem in a supply chain network. Journal of Optimization in Industrial Engineering,7(14), 89-102.
Safaei, S., Naderi, R., Sohrabi, A., Hatami, A. (2016). Scheduling of Unrelated Parallel Machines using two Multi Objective Genetic Algorithm with Sequence-Dependent Setup Times and Precedent Constraints. International Journal of Advanced Design and Manufacturing Technology (ADMT).
Shokouhifar, M., & Jalali, A. (2014, May). Real-time task scheduling in heterogeneous multiprocessor systems using artificial bee colony. InElectrical Engineering (ICEE), 2014 22nd Iranian Conference on (pp. 1007-1012). IEEE.
Shokouhifar, M., & Hassanzadeh, A. (2014). An energy efficient routing protocol in wireless sensor networks using genetic algorithm. Advances in Environmental Biology, 8(21), 86-93.
Shokouhifar, M., & Jalali, A. (2015a). A new evolutionary based application specific routing protocol for clustered wireless sensor networks. AEU-International Journal of Electronics and Communications, 69(1), 432-441.
Shokouhifar, M., & Jalali, A. (2015b). An evolutionary-based methodology for symbolic simplification of analog circuits using genetic algorithm and simulated annealing. Expert Systems with Applications, 42(3), 1189-1201.
Sivrikaya-Şerifoǧlu, F., & Ulusoy, G. (1999). Parallel machine scheduling with earliness and tardiness penalties. Computers & Operations Research,26(8), 773-787.
Sivrikaya, F., & Ulusoy, G. (1999). Parallel machine scheduling with earliness and tardiness penalties, Computers & Operations Research, 26 773 – 787.
Sridhar, J., & Rajendran, C. (1996). Scheduling in flowshop and cellular manufacturing systems with multiple objectives—a genetic algorithmic approach. Production Planning & Control, 7(4), 374-382.
Suresh, R. K., & Mohanasundaram, K. M. (2004, December). Pareto archived simulated annealing for permutation flow shop scheduling with multiple objectives. In Cybernetics and Intelligent Systems, 2004 IEEE Conference on (Vol. 2, pp. 712-717). IEEE.
Tavakkoli-Moghaddam, R., Jolai Ghazvini, F., Khodadadeghan, Y., & Haghnevis, M. (2006). A Mathematical Model of a Multi-Criteria Parallel Machine Scheduling Problem: a Genetic Algorithm (RESEARCH NOTE).International Journal of Engineering-Transactions A: Basics, 19(1), 79.
Tavakkoli-Moghaddam, R., Rahimi-Vahed, A., & Mirzaei, A. H. (2007). A hybrid multi-objective immune algorithm for a flow shop scheduling problem with bi-objectives: weighted mean completion time and weighted mean tardiness. Information Sciences, 177(22), 5072-5090.
Tavakkoli-Moghaddam, R., Taheri, F., & Bazzazi, M. (2008). Multi-Objective Unrelated Parallel Machines Scheduling with Sequence-Dependent Setup Times and Precedence Constraints. International Journal of Engineering, Transactions A: Basics, 21(3), 269-278.
Vallada, E., & Ruiz, R. (2012). Scheduling unrelated parallel machines with sequence dependent setup times and weighted earliness–tardiness minimization. In Just-in-Time Systems (pp. 67-90). Springer New York.
Varadharajan, T. K., & Rajendran, C. (2005). A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs. European Journal of Operational Research, 167(3), 772-795.
Yenisey, M. M., & Yagmahan, B. (2014). Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends. Omega, 45, 119-135.
Ying, K. C., Lee, Z. J., & Lin, S. W. (2012). Makespan minimization for scheduling unrelated parallel machines with setup times. Journal of Intelligent Manufacturing, 23(5), 1795-1803.
Yoo, M., & Gen, M. (2007). Scheduling algorithm for real-time tasks using multiobjective hybrid genetic algorithm in heterogeneous multiprocessors system. Computers & Operations Research, 34(10), 3084-3098.
Yu, L., Shih, H. M., Pfund, M., Carlyle, W. M., & Fowler, J. W. (2002). Scheduling of unrelated parallel machines: an application to PWB manufacturing. IIE transactions, 34(11), 921-931.
Zarei, M. H., Davvari, M., Kolahan, F., & Wong, K. Y. (2016). Simultaneous selection and scheduling with sequence-dependent setup times, lateness penalties, and machine availability constraint: Heuristic approaches. International Journal of Industrial Engineering Computations, 7(1), 147.
Zitzler, E., & Thiele, L. (1998, September). Multiobjective optimization using evolutionary algorithms—a comparative case study. In Parallel problem solving from nature—PPSN V (pp. 292-301). Springer Berlin Heidelberg.
  • 17
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: International Journal of Industrial Engineering Computations | Year: 2016 | Volume: 7 | Issue: 4 | Views: 2813 | Reviews: 0

Related Articles:
  • M-machine, no-wait flowshop scheduling with sequence dependent setup times ...
  • Solving group scheduling problem in no-wait flexible flowshop with random m ...
  • Minimizing total weighted tardiness for the single machine scheduling probl ...
  • An imperialist competitive algorithm for a bi-objective parallel machine sc ...
  • A two-phase fuzzy programming model for a complex bi-objective no-wait flow ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com