How to cite this paper
Nikabadi, M & Naderi, R. (2016). A hybrid algorithm for unrelated parallel machines scheduling.International Journal of Industrial Engineering Computations , 7(4), 681-702.
Refrences
Allahverdi, A., Ng, C. T., Cheng, T. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup times or costs. European Journal of Operational Research, 187(3), 985-1032.
Arjmand, M., & Najafi, A. A. (2015). Solving a multi-mode bi-objective resource investment problem using meta-heuristic algorithms. Advanced Computational Techniques in Electromagnetics, 1, 41-58.
Arnaout, J. P., Musa, R., & Rabadi, G. (2014). A two-stage Ant Colony optimization algorithm to minimize the makespan on unrelated parallel machines—part II: enhancements and experimentations. Journal of Intelligent Manufacturing, 25(1), 43-53.
Arnaout, J. P., Rabadi, G., & Musa, R. (2010). A two-stage ant colony optimization algorithm to minimize the makespan on unrelated parallel machines with sequence-dependent setup times. Journal of Intelligent Manufacturing, 21(6), 693-701.
Arroyo, J. E. C., & Armentano, V. A. (2005). Genetic local search for multi-objective flowshop scheduling problems. European Journal of Operational Research, 167(3), 717-738.
Azizi, V., Jabbari, M., & Kheirkhah, A. S. (2016). M-machine, no-wait flowshop scheduling with sequence dependent setup times and truncated learning function to minimize the makespan. International Journal of Industrial Engineering Computations, 7(2), 309.
Bank, J., & Werner, F. (2001). Heuristic algorithms for unrelated parallel machine scheduling with a common due date, release dates, and linear earliness and tardiness penalties. Mathematical and computer modelling, 33(4), 363-383.
Biskup, D., & Cheng, T. E. (1999). Multiple-machine scheduling with earliness, tardiness and completion time penalties. Computers & operations research, 26(1), 45-57.
Bozorgirad, M. A., & Logendran, R. (2012). Sequence-dependent group scheduling problem on unrelated-parallel machines. Expert Systems with Applications, 39(10), 9021-9030.
Brucker, P. (1998). Scheduling algorithm. Berlin: Springer
Caric, T., & Gold, H. (Eds.). (2008). Vehicle routing problem. Sciyo. com.
Cheng, T. C. E., & Sin, C. C. S. (1990). A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research,47(3), 271-292.
Cochran, J. K., Horng, S. M., & Fowler, J. W. (2003). A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Computers & Operations Research, 30(7), 1087-1102.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons.
Demirkol, E., Mehta, S., & Uzsoy, R. (1998). Benchmarks for shop scheduling problems. European Journal of Operational Research, 109(1), 137-141.
De CM Nogueira, J. P., Arroyo, J. E. C., Villadiego, H. M. M., & Gonçalves, L. B. (2014). Hybrid GRASP heuristics to solve an unrelated parallel machine scheduling problem with earliness and tardiness penalties. Electronic Notes in Theoretical Computer Science, 302, 53-72.
Dubois-Lacoste, J., López-Ibáñez, M., & Stützle, T. (2011). A hybrid TP+ PLS algorithm for bi-objective flow-shop scheduling problems. Computers & Operations Research, 38(8), 1219-1236.
Elhaddad, Y. R. (2012). Combined Simulated Annealing and Genetic Algorithm to Solve Optimization Problems. World Academy of Science, Engineering and Technology, 68, 1508-1510.
Eren, T. (2009). A bicriteria parallel machine scheduling with a learning effect of setup and removal times. Applied Mathematical Modelling, 33(2), 1141-1150.
Fakhrzad, M., Sadeghieh, A., & Emami, L. (2012). A new multi-objective job shop scheduling with setup times using a hybrid genetic algorithm. International Journal of Engineering-Transactions B: Applications, 26(2), 207.
Garey, M. R., & Johnson, D. S. (1976). Scheduling tasks with nonuniform deadlines on two processors. Journal of the ACM (JACM), 23(3), 461-467.
Geramianfar, R., Pakzad, M., Golhashem, H., & Tavakkoli-Moghaddam, R. (2013). A multi-objective hub covering location problem under congestion using simulated annealing algorithm. Uncertain Supply Chain Management, 1(3), 153-164.
Gupta, J. N. D., Ho, J. C., & Webster, S. (2000). Bicriteria optimisation of the makespan and mean flowtime on two identical parallel machines. Journal of the Operational Research Society, 51(11), 1330-1339.
Hassanpour, S. T., Naseri, M. A., & Nahavandi, N. (2015). Solving re-entrant no-wait flow shop scheduling problem. International Journal of Engineering-Transactions C: Aspects, 28(6), 903.
Holland, J. H. (1975). Adaptation in natural and artificial system: an introduction with application to biology, control and artificial intelligence. Ann Arbor, University of Michigan Press.
Ho, J. C., & Chang, Y. L. (1991). A new heuristic for the n-job, M-machine flow-shop problem. European Journal of Operational Research, 52(2), 194-202.
Huo, Y., Leung, J. Y. T., & Zhao, H. (2007). Bi-criteria scheduling problems: Number of tardy jobs and maximum weighted tardiness. European Journal of Operational Research, 177(1), 116-134.
Jolai, F., Asefi, H., Rabiee, M., & Ramezani, P. (2013). Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Scientia Iranica, 20(3), 861-872.
Joo, C. M., & Kim, B. S. (2015). Hybrid genetic algorithms with dispatching rules for unrelated parallel machine scheduling with setup time and production availability. Computers & Industrial Engineering, 85, 102-109.
Kayvanfar, V., Komaki, G. M., Aalaei, A., & Zandieh, M. (2014). Minimizing total tardiness and earliness on unrelated parallel machines with controllable processing times. Computers & Operations Research, 41, 31-43.
Kim, D. W., Kim, K. H., Jang, W., & Chen, F. F. (2002). Unrelated parallel machine scheduling with setup times using simulated annealing. Robotics and Computer-Integrated Manufacturing, 18(3), 223-231.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.
Lam, K., & Xing, W. (1997). New trends in parallel machine scheduling.International Journal of Operations & Production Management, 17(3), 326-338.
Lee, C. H., Liao, C. J., & Chao, C. W. (2014). Unrelated parallel machine scheduling with dedicated machines and common deadline. Computers & Industrial Engineering, 74, 161-168.
Lin, S. W., & Ying, K. C. (2013). Minimizing makespan and total flowtime in permutation flowshops by a bi-objective multi-start simulated-annealing algorithm. Computers & Operations Research, 40(6), 1625-1647.
Lin, S. W., & Ying, K. C. (2014). ABC-based manufacturing scheduling for unrelated parallel machines with machine-dependent and job sequence-dependent setup times. Computers & Operations Research, 51, 172-181.
Lin, Y. K. (2006). Data generation and heuristics for unrelated parallel machine scheduling problems (Vol. 67, No. 11).
Lin, Y. K., & Lin, H. C. (2015). Bicriteria scheduling problem for unrelated parallel machines with release dates. Computers & Operations Research, 64, 28-39.
Logendran, R., McDonell, B., & Smucker, B. (2007). Scheduling unrelated parallel machines with sequence-dependent setups. Computers & Operations Research, 34(11), 3420-3438.
Loukil, T., Teghem, J., & Tuyttens, D. (2005). Solving multi-objective production scheduling problems using metaheuristics. European Journal of Operational Research, 161(1), 42-61.
Majumdar, J., & Bhunia, A. K. (2011). Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times. Journal of Computational and Applied Mathematics, 235(9), 3063-3078.
Pinedo, M. (2002). Scheduling: theory, algorithms, and systems.
Molina-Sánchez, L. P., & González-Neira, E. M. (2016). GRASP to minimize total weighted tardiness in a permutation flow shop environment.International Journal of Industrial Engineering Computations, 7(1), 161.
Radhakrishnan, S., & Ventura, J. A. (2000). Simulated annealing for parallel machine scheduling with earliness-tardiness penalties and sequence-dependent set-up times. International Journal of Production Research,38(10), 2233-2252.
Ruiz, R., & Andrés, C. (2007). Scheduling unrelated parallel machines with resource-assignable sequence dependent setup times. Technical Report DEIOAC-2007-01, Universidad Politécnica de Valencia.
Sarrafha, K., Kazemi, A., & Alinezhad, A. (2014). A multi-objective evolutionary approach for integrated production-distribution planning problem in a supply chain network. Journal of Optimization in Industrial Engineering,7(14), 89-102.
Safaei, S., Naderi, R., Sohrabi, A., Hatami, A. (2016). Scheduling of Unrelated Parallel Machines using two Multi Objective Genetic Algorithm with Sequence-Dependent Setup Times and Precedent Constraints. International Journal of Advanced Design and Manufacturing Technology (ADMT).
Shokouhifar, M., & Jalali, A. (2014, May). Real-time task scheduling in heterogeneous multiprocessor systems using artificial bee colony. InElectrical Engineering (ICEE), 2014 22nd Iranian Conference on (pp. 1007-1012). IEEE.
Shokouhifar, M., & Hassanzadeh, A. (2014). An energy efficient routing protocol in wireless sensor networks using genetic algorithm. Advances in Environmental Biology, 8(21), 86-93.
Shokouhifar, M., & Jalali, A. (2015a). A new evolutionary based application specific routing protocol for clustered wireless sensor networks. AEU-International Journal of Electronics and Communications, 69(1), 432-441.
Shokouhifar, M., & Jalali, A. (2015b). An evolutionary-based methodology for symbolic simplification of analog circuits using genetic algorithm and simulated annealing. Expert Systems with Applications, 42(3), 1189-1201.
Sivrikaya-Şerifoǧlu, F., & Ulusoy, G. (1999). Parallel machine scheduling with earliness and tardiness penalties. Computers & Operations Research,26(8), 773-787.
Sivrikaya, F., & Ulusoy, G. (1999). Parallel machine scheduling with earliness and tardiness penalties, Computers & Operations Research, 26 773 – 787.
Sridhar, J., & Rajendran, C. (1996). Scheduling in flowshop and cellular manufacturing systems with multiple objectives—a genetic algorithmic approach. Production Planning & Control, 7(4), 374-382.
Suresh, R. K., & Mohanasundaram, K. M. (2004, December). Pareto archived simulated annealing for permutation flow shop scheduling with multiple objectives. In Cybernetics and Intelligent Systems, 2004 IEEE Conference on (Vol. 2, pp. 712-717). IEEE.
Tavakkoli-Moghaddam, R., Jolai Ghazvini, F., Khodadadeghan, Y., & Haghnevis, M. (2006). A Mathematical Model of a Multi-Criteria Parallel Machine Scheduling Problem: a Genetic Algorithm (RESEARCH NOTE).International Journal of Engineering-Transactions A: Basics, 19(1), 79.
Tavakkoli-Moghaddam, R., Rahimi-Vahed, A., & Mirzaei, A. H. (2007). A hybrid multi-objective immune algorithm for a flow shop scheduling problem with bi-objectives: weighted mean completion time and weighted mean tardiness. Information Sciences, 177(22), 5072-5090.
Tavakkoli-Moghaddam, R., Taheri, F., & Bazzazi, M. (2008). Multi-Objective Unrelated Parallel Machines Scheduling with Sequence-Dependent Setup Times and Precedence Constraints. International Journal of Engineering, Transactions A: Basics, 21(3), 269-278.
Vallada, E., & Ruiz, R. (2012). Scheduling unrelated parallel machines with sequence dependent setup times and weighted earliness–tardiness minimization. In Just-in-Time Systems (pp. 67-90). Springer New York.
Varadharajan, T. K., & Rajendran, C. (2005). A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs. European Journal of Operational Research, 167(3), 772-795.
Yenisey, M. M., & Yagmahan, B. (2014). Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends. Omega, 45, 119-135.
Ying, K. C., Lee, Z. J., & Lin, S. W. (2012). Makespan minimization for scheduling unrelated parallel machines with setup times. Journal of Intelligent Manufacturing, 23(5), 1795-1803.
Yoo, M., & Gen, M. (2007). Scheduling algorithm for real-time tasks using multiobjective hybrid genetic algorithm in heterogeneous multiprocessors system. Computers & Operations Research, 34(10), 3084-3098.
Yu, L., Shih, H. M., Pfund, M., Carlyle, W. M., & Fowler, J. W. (2002). Scheduling of unrelated parallel machines: an application to PWB manufacturing. IIE transactions, 34(11), 921-931.
Zarei, M. H., Davvari, M., Kolahan, F., & Wong, K. Y. (2016). Simultaneous selection and scheduling with sequence-dependent setup times, lateness penalties, and machine availability constraint: Heuristic approaches. International Journal of Industrial Engineering Computations, 7(1), 147.
Zitzler, E., & Thiele, L. (1998, September). Multiobjective optimization using evolutionary algorithms—a comparative case study. In Parallel problem solving from nature—PPSN V (pp. 292-301). Springer Berlin Heidelberg.
Arjmand, M., & Najafi, A. A. (2015). Solving a multi-mode bi-objective resource investment problem using meta-heuristic algorithms. Advanced Computational Techniques in Electromagnetics, 1, 41-58.
Arnaout, J. P., Musa, R., & Rabadi, G. (2014). A two-stage Ant Colony optimization algorithm to minimize the makespan on unrelated parallel machines—part II: enhancements and experimentations. Journal of Intelligent Manufacturing, 25(1), 43-53.
Arnaout, J. P., Rabadi, G., & Musa, R. (2010). A two-stage ant colony optimization algorithm to minimize the makespan on unrelated parallel machines with sequence-dependent setup times. Journal of Intelligent Manufacturing, 21(6), 693-701.
Arroyo, J. E. C., & Armentano, V. A. (2005). Genetic local search for multi-objective flowshop scheduling problems. European Journal of Operational Research, 167(3), 717-738.
Azizi, V., Jabbari, M., & Kheirkhah, A. S. (2016). M-machine, no-wait flowshop scheduling with sequence dependent setup times and truncated learning function to minimize the makespan. International Journal of Industrial Engineering Computations, 7(2), 309.
Bank, J., & Werner, F. (2001). Heuristic algorithms for unrelated parallel machine scheduling with a common due date, release dates, and linear earliness and tardiness penalties. Mathematical and computer modelling, 33(4), 363-383.
Biskup, D., & Cheng, T. E. (1999). Multiple-machine scheduling with earliness, tardiness and completion time penalties. Computers & operations research, 26(1), 45-57.
Bozorgirad, M. A., & Logendran, R. (2012). Sequence-dependent group scheduling problem on unrelated-parallel machines. Expert Systems with Applications, 39(10), 9021-9030.
Brucker, P. (1998). Scheduling algorithm. Berlin: Springer
Caric, T., & Gold, H. (Eds.). (2008). Vehicle routing problem. Sciyo. com.
Cheng, T. C. E., & Sin, C. C. S. (1990). A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research,47(3), 271-292.
Cochran, J. K., Horng, S. M., & Fowler, J. W. (2003). A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Computers & Operations Research, 30(7), 1087-1102.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons.
Demirkol, E., Mehta, S., & Uzsoy, R. (1998). Benchmarks for shop scheduling problems. European Journal of Operational Research, 109(1), 137-141.
De CM Nogueira, J. P., Arroyo, J. E. C., Villadiego, H. M. M., & Gonçalves, L. B. (2014). Hybrid GRASP heuristics to solve an unrelated parallel machine scheduling problem with earliness and tardiness penalties. Electronic Notes in Theoretical Computer Science, 302, 53-72.
Dubois-Lacoste, J., López-Ibáñez, M., & Stützle, T. (2011). A hybrid TP+ PLS algorithm for bi-objective flow-shop scheduling problems. Computers & Operations Research, 38(8), 1219-1236.
Elhaddad, Y. R. (2012). Combined Simulated Annealing and Genetic Algorithm to Solve Optimization Problems. World Academy of Science, Engineering and Technology, 68, 1508-1510.
Eren, T. (2009). A bicriteria parallel machine scheduling with a learning effect of setup and removal times. Applied Mathematical Modelling, 33(2), 1141-1150.
Fakhrzad, M., Sadeghieh, A., & Emami, L. (2012). A new multi-objective job shop scheduling with setup times using a hybrid genetic algorithm. International Journal of Engineering-Transactions B: Applications, 26(2), 207.
Garey, M. R., & Johnson, D. S. (1976). Scheduling tasks with nonuniform deadlines on two processors. Journal of the ACM (JACM), 23(3), 461-467.
Geramianfar, R., Pakzad, M., Golhashem, H., & Tavakkoli-Moghaddam, R. (2013). A multi-objective hub covering location problem under congestion using simulated annealing algorithm. Uncertain Supply Chain Management, 1(3), 153-164.
Gupta, J. N. D., Ho, J. C., & Webster, S. (2000). Bicriteria optimisation of the makespan and mean flowtime on two identical parallel machines. Journal of the Operational Research Society, 51(11), 1330-1339.
Hassanpour, S. T., Naseri, M. A., & Nahavandi, N. (2015). Solving re-entrant no-wait flow shop scheduling problem. International Journal of Engineering-Transactions C: Aspects, 28(6), 903.
Holland, J. H. (1975). Adaptation in natural and artificial system: an introduction with application to biology, control and artificial intelligence. Ann Arbor, University of Michigan Press.
Ho, J. C., & Chang, Y. L. (1991). A new heuristic for the n-job, M-machine flow-shop problem. European Journal of Operational Research, 52(2), 194-202.
Huo, Y., Leung, J. Y. T., & Zhao, H. (2007). Bi-criteria scheduling problems: Number of tardy jobs and maximum weighted tardiness. European Journal of Operational Research, 177(1), 116-134.
Jolai, F., Asefi, H., Rabiee, M., & Ramezani, P. (2013). Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Scientia Iranica, 20(3), 861-872.
Joo, C. M., & Kim, B. S. (2015). Hybrid genetic algorithms with dispatching rules for unrelated parallel machine scheduling with setup time and production availability. Computers & Industrial Engineering, 85, 102-109.
Kayvanfar, V., Komaki, G. M., Aalaei, A., & Zandieh, M. (2014). Minimizing total tardiness and earliness on unrelated parallel machines with controllable processing times. Computers & Operations Research, 41, 31-43.
Kim, D. W., Kim, K. H., Jang, W., & Chen, F. F. (2002). Unrelated parallel machine scheduling with setup times using simulated annealing. Robotics and Computer-Integrated Manufacturing, 18(3), 223-231.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.
Lam, K., & Xing, W. (1997). New trends in parallel machine scheduling.International Journal of Operations & Production Management, 17(3), 326-338.
Lee, C. H., Liao, C. J., & Chao, C. W. (2014). Unrelated parallel machine scheduling with dedicated machines and common deadline. Computers & Industrial Engineering, 74, 161-168.
Lin, S. W., & Ying, K. C. (2013). Minimizing makespan and total flowtime in permutation flowshops by a bi-objective multi-start simulated-annealing algorithm. Computers & Operations Research, 40(6), 1625-1647.
Lin, S. W., & Ying, K. C. (2014). ABC-based manufacturing scheduling for unrelated parallel machines with machine-dependent and job sequence-dependent setup times. Computers & Operations Research, 51, 172-181.
Lin, Y. K. (2006). Data generation and heuristics for unrelated parallel machine scheduling problems (Vol. 67, No. 11).
Lin, Y. K., & Lin, H. C. (2015). Bicriteria scheduling problem for unrelated parallel machines with release dates. Computers & Operations Research, 64, 28-39.
Logendran, R., McDonell, B., & Smucker, B. (2007). Scheduling unrelated parallel machines with sequence-dependent setups. Computers & Operations Research, 34(11), 3420-3438.
Loukil, T., Teghem, J., & Tuyttens, D. (2005). Solving multi-objective production scheduling problems using metaheuristics. European Journal of Operational Research, 161(1), 42-61.
Majumdar, J., & Bhunia, A. K. (2011). Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times. Journal of Computational and Applied Mathematics, 235(9), 3063-3078.
Pinedo, M. (2002). Scheduling: theory, algorithms, and systems.
Molina-Sánchez, L. P., & González-Neira, E. M. (2016). GRASP to minimize total weighted tardiness in a permutation flow shop environment.International Journal of Industrial Engineering Computations, 7(1), 161.
Radhakrishnan, S., & Ventura, J. A. (2000). Simulated annealing for parallel machine scheduling with earliness-tardiness penalties and sequence-dependent set-up times. International Journal of Production Research,38(10), 2233-2252.
Ruiz, R., & Andrés, C. (2007). Scheduling unrelated parallel machines with resource-assignable sequence dependent setup times. Technical Report DEIOAC-2007-01, Universidad Politécnica de Valencia.
Sarrafha, K., Kazemi, A., & Alinezhad, A. (2014). A multi-objective evolutionary approach for integrated production-distribution planning problem in a supply chain network. Journal of Optimization in Industrial Engineering,7(14), 89-102.
Safaei, S., Naderi, R., Sohrabi, A., Hatami, A. (2016). Scheduling of Unrelated Parallel Machines using two Multi Objective Genetic Algorithm with Sequence-Dependent Setup Times and Precedent Constraints. International Journal of Advanced Design and Manufacturing Technology (ADMT).
Shokouhifar, M., & Jalali, A. (2014, May). Real-time task scheduling in heterogeneous multiprocessor systems using artificial bee colony. InElectrical Engineering (ICEE), 2014 22nd Iranian Conference on (pp. 1007-1012). IEEE.
Shokouhifar, M., & Hassanzadeh, A. (2014). An energy efficient routing protocol in wireless sensor networks using genetic algorithm. Advances in Environmental Biology, 8(21), 86-93.
Shokouhifar, M., & Jalali, A. (2015a). A new evolutionary based application specific routing protocol for clustered wireless sensor networks. AEU-International Journal of Electronics and Communications, 69(1), 432-441.
Shokouhifar, M., & Jalali, A. (2015b). An evolutionary-based methodology for symbolic simplification of analog circuits using genetic algorithm and simulated annealing. Expert Systems with Applications, 42(3), 1189-1201.
Sivrikaya-Şerifoǧlu, F., & Ulusoy, G. (1999). Parallel machine scheduling with earliness and tardiness penalties. Computers & Operations Research,26(8), 773-787.
Sivrikaya, F., & Ulusoy, G. (1999). Parallel machine scheduling with earliness and tardiness penalties, Computers & Operations Research, 26 773 – 787.
Sridhar, J., & Rajendran, C. (1996). Scheduling in flowshop and cellular manufacturing systems with multiple objectives—a genetic algorithmic approach. Production Planning & Control, 7(4), 374-382.
Suresh, R. K., & Mohanasundaram, K. M. (2004, December). Pareto archived simulated annealing for permutation flow shop scheduling with multiple objectives. In Cybernetics and Intelligent Systems, 2004 IEEE Conference on (Vol. 2, pp. 712-717). IEEE.
Tavakkoli-Moghaddam, R., Jolai Ghazvini, F., Khodadadeghan, Y., & Haghnevis, M. (2006). A Mathematical Model of a Multi-Criteria Parallel Machine Scheduling Problem: a Genetic Algorithm (RESEARCH NOTE).International Journal of Engineering-Transactions A: Basics, 19(1), 79.
Tavakkoli-Moghaddam, R., Rahimi-Vahed, A., & Mirzaei, A. H. (2007). A hybrid multi-objective immune algorithm for a flow shop scheduling problem with bi-objectives: weighted mean completion time and weighted mean tardiness. Information Sciences, 177(22), 5072-5090.
Tavakkoli-Moghaddam, R., Taheri, F., & Bazzazi, M. (2008). Multi-Objective Unrelated Parallel Machines Scheduling with Sequence-Dependent Setup Times and Precedence Constraints. International Journal of Engineering, Transactions A: Basics, 21(3), 269-278.
Vallada, E., & Ruiz, R. (2012). Scheduling unrelated parallel machines with sequence dependent setup times and weighted earliness–tardiness minimization. In Just-in-Time Systems (pp. 67-90). Springer New York.
Varadharajan, T. K., & Rajendran, C. (2005). A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs. European Journal of Operational Research, 167(3), 772-795.
Yenisey, M. M., & Yagmahan, B. (2014). Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends. Omega, 45, 119-135.
Ying, K. C., Lee, Z. J., & Lin, S. W. (2012). Makespan minimization for scheduling unrelated parallel machines with setup times. Journal of Intelligent Manufacturing, 23(5), 1795-1803.
Yoo, M., & Gen, M. (2007). Scheduling algorithm for real-time tasks using multiobjective hybrid genetic algorithm in heterogeneous multiprocessors system. Computers & Operations Research, 34(10), 3084-3098.
Yu, L., Shih, H. M., Pfund, M., Carlyle, W. M., & Fowler, J. W. (2002). Scheduling of unrelated parallel machines: an application to PWB manufacturing. IIE transactions, 34(11), 921-931.
Zarei, M. H., Davvari, M., Kolahan, F., & Wong, K. Y. (2016). Simultaneous selection and scheduling with sequence-dependent setup times, lateness penalties, and machine availability constraint: Heuristic approaches. International Journal of Industrial Engineering Computations, 7(1), 147.
Zitzler, E., & Thiele, L. (1998, September). Multiobjective optimization using evolutionary algorithms—a comparative case study. In Parallel problem solving from nature—PPSN V (pp. 292-301). Springer Berlin Heidelberg.