How to cite this paper
Gunji, B., Deepak, B., Bahubalendruni, M & Biswal, B. (2017). Hybridized genetic-immune based strategy to obtain optimal feasible assembly sequences.International Journal of Industrial Engineering Computations , 8(3), 333-346.
Refrences
AkpıNar, S., Bayhan, G. M., & Baykasoglu, A. (2013). Hybridizing ant colony optimization via genetic algorithm for mixed-model assembly line balancing problem with sequence dependent setup times between tasks. Applied Soft Computing, 13(1), 574-589.
Bahubalendruni, M. V. A., & Biswal, B. B. (2014a). An algorithm to test feasibility predicate for robotic assemblies. Trends in Mechanical Engineering & Technology, 4(2), 11-16.
Bahubalendruni, M. R., & Biswal, B. B. (2014b). Computer aid for automatic liaisons extraction from cad based robotic assembly. In Intelligent Systems and Control (ISCO), 2014 IEEE 8th International Conference on (pp. 42-45). IEEE.
Bahubalendruni, M. R., & Biswal, B. B. (2015a). A novel concatenation method for generating optimal robotic assembly sequences. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406215623813.
Bahubalendruni, M. R., Biswal, B. B., Kumar, M., & Nayak, R. (2015b). Influence of assembly predicate consideration on optimal assembly sequence generation. Assembly Automation, 35(4), 309-316.
Bahubalendruni, M. R., & Biswal, B. B. (2015c). A review on assembly sequence generation and its automation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406215584633.
Bahubalendruni, M. R., & Biswal, B. B. (2015d). An intelligent method to test feasibility predicate for robotic assembly sequence generation. In Intelligent Computing, Communication and Devices (pp. 277-283). Springer India.
Bahubalendruni, M. R., & Biswal, B. B. (2016). Liaison concatenation–A method to obtain feasible assembly sequences from 3D-CAD product. Sadhana, 41(1), 67-74.
Bahubalendruni, M. R., Biswal, B. B., Kumar, M., & Deepak, B. B. V. L. (2016). A Note on Mechanical Feasibility Predicate for Robotic Assembly Sequence Generation. In CAD/CAM, Robotics and Factories of the Future(pp. 397-404). Springer India.
Bahubalendruni, M. R., Deepak, B. B. V. L., & Biswal, B. B. (2016). An advanced immune based strategy to obtain an optimal feasible assembly sequence. Assembly Automation, 36(2), 127-137.
Bahubalendruni, M. V. A., Biswal, B. B., & BB, V. (2015). Optimal Robotic Assembly Sequence generation using Particle Swarm Optimization. Journal of Automation and Control Engineering, 4(2), 89-95
Biswal, B. B., Deepak, B. B., & Rao, Y. (2013). Optimization of robotic assembly sequences using immune based technique. Journal of Manufacturing Technology Management, 24(3), 384-396.
Chang, C. C., Tseng, H. E., & Meng, L. P. (2009). Artificial immune systems for assembly sequence planning exploration. Engineering Applications of Artificial Intelligence, 22(8), 1218-1232.
Chen, S. F., & Liu, Y. J. (2001). An adaptive genetic assembly-sequence planner. International Journal of Computer Integrated Manufacturing, 14(5), 489-500.
Chen, R. S., Lu, K. Y., & Yu, S. C. (2002). A hybrid genetic algorithm approach on multi-objective of assembly planning problem. Engineering Applications of Artificial Intelligence, 15(5), 447-457.
De Fazio, T., & Whitney, D. (1987). Simplified generation of all mechanical assembly sequences. IEEE Journal on Robotics and Automation, 3(6), 640-658.
Deepak, B. B. V. L., & Parhi, D. R. (2016). Control of an automated mobile manipulator using artificial immune system. Journal of Experimental & Theoretical Artificial Intelligence, 28(1-2), 417-439.
Deepak, B. B. V. L., & Parhi, D. (2013). Intelligent adaptive immune-based motion planner of a mobile robot in cluttered environment. Intelligent Service Robotics, 6(3), 155-162.
Dong, T., Tong, R., Zhang, L., & Dong, J. (2007). A knowledge-based approach to assembly sequence planning. The International Journal of Advanced Manufacturing Technology, 32(11-12), 1232-1244.
Hsu, Y. Y., Tai, P. H., Wang, M. W., & Chen, W. C. (2011). A knowledge-based engineering system for assembly sequence planning. The International Journal of Advanced Manufacturing Technology, 55(5-8), 763-782.
Kashkoush, M., & ElMaraghy, H. (2015). Knowledge-based model for constructing master assembly sequence. Journal of Manufacturing Systems, 34, 43-52.
Lee, H. R., & Gemmill, D. D. (2001). Improved methods of assembly sequence determination for automatic assembly systems. European Journal of Operational Research, 131(3), 611-621.
Linn, R. J., & Liu, H. (1999). An automatic assembly liaison extraction method and assembly liaison model. IIE transactions, 31(4), 353-363.
Nayak, R., Bahubalendruni, M. R., Biswal, B. B., & Kumar, M. (2015, September). Comparison of liaison concatenation method with simulated annealing for assembly sequence generation problems. In Next Generation Computing Technologies (NGCT), 2015 1st International Conference on (pp. 531-535). IEEE.
Shan, H., Zhou, S., & Sun, Z. (2009). Research on assembly sequence planning based on genetic simulated annealing algorithm and ant colony optimization algorithm. Assembly Automation, 29(3), 249-256.
Sinanoglu, C., & Riza Börklü, H. (2005). An assembly sequence-planning system for mechanical parts using neural network. Assembly Automation, 25(1), 38-52.
Smith, S. S. F. (2004). Using multiple genetic operators to reduce premature convergence in genetic assembly planning. Computers in Industry, 54(1), 35-49.
Wang, Y., & Liu, J. H. (2010). Chaotic particle swarm optimization for assembly sequence planning. Robotics and Computer-Integrated Manufacturing, 26(2), 212-222.
Wang, J. F., Liu, J. H., & Zhong, Y. F. (2005). A novel ant colony algorithm for assembly sequence planning. The International Journal of Advanced Manufacturing Technology, 25(11-12), 1137-1143.
Xing, Y., & Wang, Y. (2012). Assembly sequence planning based on a hybrid particle swarm optimisation and genetic algorithm. International Journal of Production Research, 50(24), 7303-7312.
Zha, X. F., Lim, S. Y., & Fok, S. C. (1998). Integrated knowledge-based assembly sequence planning. The International Journal of Advanced Manufacturing Technology, 14(1), 50-64.
Bahubalendruni, M. V. A., & Biswal, B. B. (2014a). An algorithm to test feasibility predicate for robotic assemblies. Trends in Mechanical Engineering & Technology, 4(2), 11-16.
Bahubalendruni, M. R., & Biswal, B. B. (2014b). Computer aid for automatic liaisons extraction from cad based robotic assembly. In Intelligent Systems and Control (ISCO), 2014 IEEE 8th International Conference on (pp. 42-45). IEEE.
Bahubalendruni, M. R., & Biswal, B. B. (2015a). A novel concatenation method for generating optimal robotic assembly sequences. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406215623813.
Bahubalendruni, M. R., Biswal, B. B., Kumar, M., & Nayak, R. (2015b). Influence of assembly predicate consideration on optimal assembly sequence generation. Assembly Automation, 35(4), 309-316.
Bahubalendruni, M. R., & Biswal, B. B. (2015c). A review on assembly sequence generation and its automation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406215584633.
Bahubalendruni, M. R., & Biswal, B. B. (2015d). An intelligent method to test feasibility predicate for robotic assembly sequence generation. In Intelligent Computing, Communication and Devices (pp. 277-283). Springer India.
Bahubalendruni, M. R., & Biswal, B. B. (2016). Liaison concatenation–A method to obtain feasible assembly sequences from 3D-CAD product. Sadhana, 41(1), 67-74.
Bahubalendruni, M. R., Biswal, B. B., Kumar, M., & Deepak, B. B. V. L. (2016). A Note on Mechanical Feasibility Predicate for Robotic Assembly Sequence Generation. In CAD/CAM, Robotics and Factories of the Future(pp. 397-404). Springer India.
Bahubalendruni, M. R., Deepak, B. B. V. L., & Biswal, B. B. (2016). An advanced immune based strategy to obtain an optimal feasible assembly sequence. Assembly Automation, 36(2), 127-137.
Bahubalendruni, M. V. A., Biswal, B. B., & BB, V. (2015). Optimal Robotic Assembly Sequence generation using Particle Swarm Optimization. Journal of Automation and Control Engineering, 4(2), 89-95
Biswal, B. B., Deepak, B. B., & Rao, Y. (2013). Optimization of robotic assembly sequences using immune based technique. Journal of Manufacturing Technology Management, 24(3), 384-396.
Chang, C. C., Tseng, H. E., & Meng, L. P. (2009). Artificial immune systems for assembly sequence planning exploration. Engineering Applications of Artificial Intelligence, 22(8), 1218-1232.
Chen, S. F., & Liu, Y. J. (2001). An adaptive genetic assembly-sequence planner. International Journal of Computer Integrated Manufacturing, 14(5), 489-500.
Chen, R. S., Lu, K. Y., & Yu, S. C. (2002). A hybrid genetic algorithm approach on multi-objective of assembly planning problem. Engineering Applications of Artificial Intelligence, 15(5), 447-457.
De Fazio, T., & Whitney, D. (1987). Simplified generation of all mechanical assembly sequences. IEEE Journal on Robotics and Automation, 3(6), 640-658.
Deepak, B. B. V. L., & Parhi, D. R. (2016). Control of an automated mobile manipulator using artificial immune system. Journal of Experimental & Theoretical Artificial Intelligence, 28(1-2), 417-439.
Deepak, B. B. V. L., & Parhi, D. (2013). Intelligent adaptive immune-based motion planner of a mobile robot in cluttered environment. Intelligent Service Robotics, 6(3), 155-162.
Dong, T., Tong, R., Zhang, L., & Dong, J. (2007). A knowledge-based approach to assembly sequence planning. The International Journal of Advanced Manufacturing Technology, 32(11-12), 1232-1244.
Hsu, Y. Y., Tai, P. H., Wang, M. W., & Chen, W. C. (2011). A knowledge-based engineering system for assembly sequence planning. The International Journal of Advanced Manufacturing Technology, 55(5-8), 763-782.
Kashkoush, M., & ElMaraghy, H. (2015). Knowledge-based model for constructing master assembly sequence. Journal of Manufacturing Systems, 34, 43-52.
Lee, H. R., & Gemmill, D. D. (2001). Improved methods of assembly sequence determination for automatic assembly systems. European Journal of Operational Research, 131(3), 611-621.
Linn, R. J., & Liu, H. (1999). An automatic assembly liaison extraction method and assembly liaison model. IIE transactions, 31(4), 353-363.
Nayak, R., Bahubalendruni, M. R., Biswal, B. B., & Kumar, M. (2015, September). Comparison of liaison concatenation method with simulated annealing for assembly sequence generation problems. In Next Generation Computing Technologies (NGCT), 2015 1st International Conference on (pp. 531-535). IEEE.
Shan, H., Zhou, S., & Sun, Z. (2009). Research on assembly sequence planning based on genetic simulated annealing algorithm and ant colony optimization algorithm. Assembly Automation, 29(3), 249-256.
Sinanoglu, C., & Riza Börklü, H. (2005). An assembly sequence-planning system for mechanical parts using neural network. Assembly Automation, 25(1), 38-52.
Smith, S. S. F. (2004). Using multiple genetic operators to reduce premature convergence in genetic assembly planning. Computers in Industry, 54(1), 35-49.
Wang, Y., & Liu, J. H. (2010). Chaotic particle swarm optimization for assembly sequence planning. Robotics and Computer-Integrated Manufacturing, 26(2), 212-222.
Wang, J. F., Liu, J. H., & Zhong, Y. F. (2005). A novel ant colony algorithm for assembly sequence planning. The International Journal of Advanced Manufacturing Technology, 25(11-12), 1137-1143.
Xing, Y., & Wang, Y. (2012). Assembly sequence planning based on a hybrid particle swarm optimisation and genetic algorithm. International Journal of Production Research, 50(24), 7303-7312.
Zha, X. F., Lim, S. Y., & Fok, S. C. (1998). Integrated knowledge-based assembly sequence planning. The International Journal of Advanced Manufacturing Technology, 14(1), 50-64.