How to cite this paper
Tebeta, R., Madushele, N., Ngwangwa, H., Madyira, D & Wang, Z. (2024). High-pressure torsion effect on microstructural and hardness properties of Magnesium with Silicon Carbide nanoparticles.Engineering Solid Mechanics, 12(2), 165-176.
Refrences
Abyzov, A. M., Shakhov, F. M., Averkin, A. I., & Nikolaev, V. I. (2015). Mechanical properties of a diamond-copper composite with high thermal conductivity. Materials and Design, 87, 527–539. https://doi.org/10.1016/j.matdes.2015.08.048
Ahmadkhaniha, D., Huang, Y., Jaskari, M., Järvenpää, A., Sohi, M. H., Zanella, C., Karjalainen, L. P., & Langdon, T. G. (2018). Effect of high-pressure torsion on microstructure, mechanical properties and corrosion resistance of cast pure Mg. Journal of Materials Science, 53(24), 16585–16597. https://doi.org/10.1007/s10853-018-2779-1
Al-Zubaydi, A. S. J., Zhilyaev, A. P., Wang, S. C., Kucita, P., & Reed, P. A. S. (2016). Evolution of microstructure in AZ91 alloy processed by high-pressure torsion. Journal of Materials Science, 51(7), 3380–3389. https://doi.org/10.1007/s10853-015-9652-2
Alil, A., Popovic’, M., Radetic’, T., & Romhanji, E. (2014). Influence of an accummulative roll bonding (ARB) process on the properties of AA5083 Al-Mg alloy sheets. Metallurgical and Materials Engineering, 20(4), 285–295.
Alsubaie, S. A., Bazarnik, P., Huang, Y., Lewandowska, M., & Langdon, T. G. (2022). Achieving superplastic elongations in an AZ80 magnesium alloy processed by high‐pressure torsion. Advanced Engineering Materials, 2200620. https://doi.org/10.1002/adem.202200620
Alsubaie, S. A., Bazarnik, P., Lewandowska, M., Huang, Y., & Langdon, T. G. (2016). Evolution of microstructure and hardness in an AZ80 magnesium alloy processed by high-pressure torsion. Journal of Materials Research and Technology, 5(2), 152–158. https://doi.org/10.1016/j.jmrt.2015.11.006
Brandon, D., & Kaplan, W. D. (2008). Microstructural characterization of materials (2nd Editio). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470727133
Brunner, P., Brumbauer, F., Steyskal, E.-M., Renk, O., Weinberg, A.-M., Schroettner, H., & Wurschum, R. (2021). Influence of high-pressure torsion deformation on the corrosion behaviour of bioresorbable Mg-based allow studied by positron annihilation. Biomaterials Science, 9, 4099–4109.
Carsley, J. E., Ning, J., Milligan, W. W., Hackney, S. A., & Aifantis, E. C. (1995). A simple, mixtures-based model for the grain size dependence of strength in nanophase metals. Nanostructured Materials, 5(4), 441–448. https://doi.org/10.1016/0965-9773(95)00257-F
Carvalho, A. P., & Figueiredo, R. B. (2022). The effect of ultragrain refinement on the strength and strain rate sensitivity of a ZK60 Magnesium alloy. Advanced Engineering Materials, 24(3), 1–7. https://doi.org/10.1002/adem.202100846
Dziubińska, A., Gontarz, A., Dziubiński, M., & Barszcz, M. (2016). The forming of Magnesium alloy forgings for aircraft and automotive applications. Advances in Science and Technology Research Journal, 10(31), 158–168. https://doi.org/10.12913/22998624/64003
Edalati, K., & Horita, Z. (2010). Continuous high-pressure torsion. Journal of Materials Science, 45(17), 4578–4582. https://doi.org/10.1007/s10853-010-4381-z
Edalati, K., & Horita, Z. (2016). A review on high-pressure torsion (HPT) from 1935 to 1988. Materials Science and Engineering A, 652, 325–352. https://doi.org/10.1016/j.msea.2015.11.074
Figueiredo, R. B., & Langdon, T. G. (2019). Processing Magnesium and its alloys by high-pressure torsion: An overview. Advanced Engineering Materials, 21(1), 1–15. https://doi.org/10.1002/adem.201801039
Gubicza, J. (2020). Annealing-induced hardening in ultrafine-grained and nanocrystalline materials. Advanced Engineering Materials, 22(1). https://doi.org/10.1002/adem.201900507
Gubicza, J., El-Tahawy, M., Lábár, J. L., Bobruk, E. V., Murashkin, M. Y., Valiev, R. Z., & Chinh, N. Q. (2020). Evolution of microstructure and hardness during artificial aging of an ultrafine-grained Al-Zn-Mg-Zr alloy processed by high pressure torsion. Journal of Materials Science, 55(35), 16791–16805. https://doi.org/10.1007/s10853-020-05264-4
Gupta, M., & Sharon, N. M. L. (2011). Magnesium, Magnesium alloys, and Magnesium composites. In John Wiley & Sons, Inc. https://doi.org/10.1007/978-3-319-69743-7_5
Harai, Y., Kai, M., Kaneko, K., Horita, Z., & Langdon, T. G. (2008). Microstructural and mechanical characteristics of AZ61 Magnesium alloy processed by high-pressure torsion. Materials Transactions, 49(1), 76–83. https://doi.org/10.2320/matertrans.ME200718
Hayter, A., & Liu, W. (1990). The power function of the studentised range test. The Annals of Statistics, 18(1), 465–468.
Herberich, E., Sikorski, J., & Hothorn, T. (2010). A robust procedure for comapring multiple means under heteroscedasticity in unbalanced designs. PLoS ONE, 5(3), e9788. https://doi.org/10.1371/journal.pone.0009788
Holweg, P., Berger, L., Cihova, M., Donohue, N., Clement, B., Schwarze, U., Sommer, N. G., Hohenberger, G., van den Beucken, J. J. J. P., Seibert, F., Leithner, A., Löffler, J. F., & Weinberg, A. M. (2020). A lean magnesium–zinc–calcium alloy ZX00 used for bone fracture stabilization in a large growing-animal model. Acta Biomaterialia, 113, 646–659. https://doi.org/10.1016/j.actbio.2020.06.013
Huang, Y., Millet, J., Zhang, N. X., Jenei, P., Gubicza, J., & Langdon, T. G. (2020). An investigation of strain-softening phenomenon in Al–0.1% Mg alloy during high-pressure torsion processing. Advanced Engineering Materials, 22(10), 1–7. https://doi.org/10.1002/adem.201901578
Ibrahim, H., Klarner, A. D., Poorganji, B., Dean, D., Luo, A. A., & Elahinia, M. (2017). Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material. Journal of the Mechanical Behavior of Biomedical Materials, 69(December 2016), 203–212. https://doi.org/10.1016/j.jmbbm.2017.01.005
Khaleghi, A. A., Akbaripanah, F., Sabbaghian, M., Máthis, K., Minárik, P., Veselý, J., El-Tahawy, M., & Gubicza, J. (2021). Influence of high-pressure torsion on microstructure, hardness and shear strength of AM60 magnesium alloy. Materials Science and Engineering A, 799(August 2020). https://doi.org/10.1016/j.msea.2020.140158
Lasalmonie, A., & Strudel, J. L. (1986). Influence of grain size on the mechanical behaviour of some high strength materials. Journal of Materials Science, 21(6), 1837–1852. https://doi.org/10.1007/BF00547918
Lugo, N., Llorca, N., Cabrera, J. M., & Horita, Z. (2008). Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion. Materials Science and Engineering: A, 477(1–2), 366–371. https://doi.org/10.1016/j.msea.2007.05.083
Maltais, A., Dubé, D., Fiset, M., Laroche, G., & Turgeon, S. (2004). Improvements in the metallography of as-cast AZ91 alloy. Materials Characterization, 52(2), 103–119. https://doi.org/10.1016/j.matchar.2004.04.002
Mizelli-Ojdanic, A., Horky, J., Mingler, B., Fanetti, M., Gardonio, S., Valant, M., Sulkowski, B., Schafler, E., Orlov, D., & Zehetbauer, M. J. (2021). Enhancing the mechanical properties of biodegradable mg alloys processed by warm HPT and thermal treatments. Materials, 14(21). https://doi.org/10.3390/ma14216399
Peng, J., Wong, L. N. Y., & Teh, C. I. (2017). Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks. Journal of Geophysical Research: Solid Earth, 122(2), 1054–1073. https://doi.org/10.1002/2016JB013469
Rosalie, J. M., & Pauw, B. R. (2014). Form-free size distributions from complementary stereological TEM/SAXS on precipitates in a Mg-Zn alloy. Acta Materialia, 66, 150–162. https://doi.org/10.1016/j.actamat.2013.11.029
Rosenthal, I., Stern, A., & Frage, N. (2014). Microstructure and mechanical properties of AlSi10Mg parts produced by the laser beam additive manufacturing (AM) technology. Metallography, Microstructure, and Analysis, 3(6), 448–453. https://doi.org/10.1007/s13632-014-0168-y
Ross, R. B. (2013). Metallic materials specification handbook (4th Editio). Springer Science & Business Media. https://doi.org/10.1007/978-1-4615-3482-2
Shirooyeh, M., Xu, J., & Langdon, T. G. (2014). Microhardness evolution and mechanical characteristics of commercial purity titanium processed by high-pressure torsion. Materials Science and Engineering A, 614, 223–231. https://doi.org/10.1016/j.msea.2014.07.030
Su, Q., Xu, J., Li, Y., Yoon, J. I., Shan, D., Guo, B., & Kim, H. S. (2018). Microstructural evolution and mechanical properties in superlight Mg-Li alloy processed by high-pressure torsion. Materials, 11(4). https://doi.org/10.3390/ma11040598
Sun, W. T., Qiao, X. G., Zheng, M. Y., He, Y., Hu, N., Xu, C., Gao, N., & Starink, M. J. (2018). Exceptional grain refinement in a Mg alloy during high pressure torsion due to rare earth containing nanosized precipitates. Materials Science and Engineering A, 728(May), 115–123. https://doi.org/10.1016/j.msea.2018.05.021
Tasan, C. C., Diehl, M., Yan, D., Bechtold, M., Roters, F., Schemmann, L., Zheng, C., Peranio, N., Ponge, D., Koyama, M., Tsuzaki, K., & Raabe, D. (2015). An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design. Annual Review of Materials Research, 45, 391–431. https://doi.org/10.1146/annurev-matsci-070214-021103
Václavová, K., Stráský, J., Polyakova, V., Stráská, J., Nejezchlebová, J., Seiner, H., Semenova, I., & Janeček, M. (2017). Microhardness and microstructure evolution of ultra-fine grained Ti-15Mo and TIMETAL LCB alloys prepared by high pressure torsion. Materials Science and Engineering A, 682(November 2016), 220–228. https://doi.org/10.1016/j.msea.2016.11.038
Valiev, R. Z., Islamgaliev, R. K., & Alexandrov, I. V. (2000). Bulk nanostructured materials from severe plastic deformation. In Progress in Materials Science (Vol. 45, Issue 2). https://doi.org/10.1016/S0079-6425(99)00007-9
Wang, M. Y., Xu, Y. J., Jing, T., Peng, G. Y., Fu, Y. N., & Chawla, N. (2012). Growth orientations and morphologies of α-Mg dendrites in Mg-Zn alloys. Scripta Materialia, 67(7–8), 629–632. https://doi.org/10.1016/j.scriptamat.2012.07.031
Wei, Q., Zhang, H. T., Schuster, B. E., Ramesh, K. T., Valiev, R. Z., Kecskes, L. J., Dowding, R. J., Magness, L., & Cho, K. (2006). Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion. Acta Materialia, 54(15), 4079–4089. https://doi.org/10.1016/j.actamat.2006.05.005
Xu, C., Horita, Z., & Langdon, T. G. (2008). The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion. Acta Materialia, 56(18), 5168–5176. https://doi.org/10.1016/j.actamat.2008.06.036
Yu, H., Xin, Y., Wang, M., & Liu, Q. (2018). Hall-Petch relationship in Mg alloys: A review. Journal of Materials Science and Technology, 34(2), 248–256. https://doi.org/10.1016/j.jmst.2017.07.022
Zener, C., & Hollomon, J. (1946). Problems in non-elastic deformation. Journal of Applied Physics, 17(2), 69–82. https://doi.org/https://doi.org/10.1063/1.1707696
Zhang, H. W., Subhash, G., Jing, X. N., Kecskes, L. J., & Dowding, R. J. (2006). Evaluation of hardness-yield strength relationships for bulk metallic glasses. Philosophical Magazine Letters, 86(5), 333–345. https://doi.org/10.1080/09500830600788935
Zhilyaev, A. P., & Langdon, T. G. (2008). Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science, 53(6), 893–979. https://doi.org/10.1016/j.pmatsci.2008.03.002
Zhilyaev, A. P., McNelley, T. R., & Langdon, T. G. (2007). Evolution of microstructure and microtexture in fcc metals during high-pressure torsion. Journal of Materials Science, 42(5), 1517–1528. https://doi.org/10.1007/s10853-006-0628-0
Zhu, Y. T., Lowe, T. C., & Langdon, T. G. (2004). Performance and applications of nanostructured materials produced by severe plastic deformation. Scripta Materialia, 51(8 SPEC. ISS.), 825–830. https://doi.org/10.1016/j.scriptamat.2004.05.006
Ahmadkhaniha, D., Huang, Y., Jaskari, M., Järvenpää, A., Sohi, M. H., Zanella, C., Karjalainen, L. P., & Langdon, T. G. (2018). Effect of high-pressure torsion on microstructure, mechanical properties and corrosion resistance of cast pure Mg. Journal of Materials Science, 53(24), 16585–16597. https://doi.org/10.1007/s10853-018-2779-1
Al-Zubaydi, A. S. J., Zhilyaev, A. P., Wang, S. C., Kucita, P., & Reed, P. A. S. (2016). Evolution of microstructure in AZ91 alloy processed by high-pressure torsion. Journal of Materials Science, 51(7), 3380–3389. https://doi.org/10.1007/s10853-015-9652-2
Alil, A., Popovic’, M., Radetic’, T., & Romhanji, E. (2014). Influence of an accummulative roll bonding (ARB) process on the properties of AA5083 Al-Mg alloy sheets. Metallurgical and Materials Engineering, 20(4), 285–295.
Alsubaie, S. A., Bazarnik, P., Huang, Y., Lewandowska, M., & Langdon, T. G. (2022). Achieving superplastic elongations in an AZ80 magnesium alloy processed by high‐pressure torsion. Advanced Engineering Materials, 2200620. https://doi.org/10.1002/adem.202200620
Alsubaie, S. A., Bazarnik, P., Lewandowska, M., Huang, Y., & Langdon, T. G. (2016). Evolution of microstructure and hardness in an AZ80 magnesium alloy processed by high-pressure torsion. Journal of Materials Research and Technology, 5(2), 152–158. https://doi.org/10.1016/j.jmrt.2015.11.006
Brandon, D., & Kaplan, W. D. (2008). Microstructural characterization of materials (2nd Editio). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470727133
Brunner, P., Brumbauer, F., Steyskal, E.-M., Renk, O., Weinberg, A.-M., Schroettner, H., & Wurschum, R. (2021). Influence of high-pressure torsion deformation on the corrosion behaviour of bioresorbable Mg-based allow studied by positron annihilation. Biomaterials Science, 9, 4099–4109.
Carsley, J. E., Ning, J., Milligan, W. W., Hackney, S. A., & Aifantis, E. C. (1995). A simple, mixtures-based model for the grain size dependence of strength in nanophase metals. Nanostructured Materials, 5(4), 441–448. https://doi.org/10.1016/0965-9773(95)00257-F
Carvalho, A. P., & Figueiredo, R. B. (2022). The effect of ultragrain refinement on the strength and strain rate sensitivity of a ZK60 Magnesium alloy. Advanced Engineering Materials, 24(3), 1–7. https://doi.org/10.1002/adem.202100846
Dziubińska, A., Gontarz, A., Dziubiński, M., & Barszcz, M. (2016). The forming of Magnesium alloy forgings for aircraft and automotive applications. Advances in Science and Technology Research Journal, 10(31), 158–168. https://doi.org/10.12913/22998624/64003
Edalati, K., & Horita, Z. (2010). Continuous high-pressure torsion. Journal of Materials Science, 45(17), 4578–4582. https://doi.org/10.1007/s10853-010-4381-z
Edalati, K., & Horita, Z. (2016). A review on high-pressure torsion (HPT) from 1935 to 1988. Materials Science and Engineering A, 652, 325–352. https://doi.org/10.1016/j.msea.2015.11.074
Figueiredo, R. B., & Langdon, T. G. (2019). Processing Magnesium and its alloys by high-pressure torsion: An overview. Advanced Engineering Materials, 21(1), 1–15. https://doi.org/10.1002/adem.201801039
Gubicza, J. (2020). Annealing-induced hardening in ultrafine-grained and nanocrystalline materials. Advanced Engineering Materials, 22(1). https://doi.org/10.1002/adem.201900507
Gubicza, J., El-Tahawy, M., Lábár, J. L., Bobruk, E. V., Murashkin, M. Y., Valiev, R. Z., & Chinh, N. Q. (2020). Evolution of microstructure and hardness during artificial aging of an ultrafine-grained Al-Zn-Mg-Zr alloy processed by high pressure torsion. Journal of Materials Science, 55(35), 16791–16805. https://doi.org/10.1007/s10853-020-05264-4
Gupta, M., & Sharon, N. M. L. (2011). Magnesium, Magnesium alloys, and Magnesium composites. In John Wiley & Sons, Inc. https://doi.org/10.1007/978-3-319-69743-7_5
Harai, Y., Kai, M., Kaneko, K., Horita, Z., & Langdon, T. G. (2008). Microstructural and mechanical characteristics of AZ61 Magnesium alloy processed by high-pressure torsion. Materials Transactions, 49(1), 76–83. https://doi.org/10.2320/matertrans.ME200718
Hayter, A., & Liu, W. (1990). The power function of the studentised range test. The Annals of Statistics, 18(1), 465–468.
Herberich, E., Sikorski, J., & Hothorn, T. (2010). A robust procedure for comapring multiple means under heteroscedasticity in unbalanced designs. PLoS ONE, 5(3), e9788. https://doi.org/10.1371/journal.pone.0009788
Holweg, P., Berger, L., Cihova, M., Donohue, N., Clement, B., Schwarze, U., Sommer, N. G., Hohenberger, G., van den Beucken, J. J. J. P., Seibert, F., Leithner, A., Löffler, J. F., & Weinberg, A. M. (2020). A lean magnesium–zinc–calcium alloy ZX00 used for bone fracture stabilization in a large growing-animal model. Acta Biomaterialia, 113, 646–659. https://doi.org/10.1016/j.actbio.2020.06.013
Huang, Y., Millet, J., Zhang, N. X., Jenei, P., Gubicza, J., & Langdon, T. G. (2020). An investigation of strain-softening phenomenon in Al–0.1% Mg alloy during high-pressure torsion processing. Advanced Engineering Materials, 22(10), 1–7. https://doi.org/10.1002/adem.201901578
Ibrahim, H., Klarner, A. D., Poorganji, B., Dean, D., Luo, A. A., & Elahinia, M. (2017). Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material. Journal of the Mechanical Behavior of Biomedical Materials, 69(December 2016), 203–212. https://doi.org/10.1016/j.jmbbm.2017.01.005
Khaleghi, A. A., Akbaripanah, F., Sabbaghian, M., Máthis, K., Minárik, P., Veselý, J., El-Tahawy, M., & Gubicza, J. (2021). Influence of high-pressure torsion on microstructure, hardness and shear strength of AM60 magnesium alloy. Materials Science and Engineering A, 799(August 2020). https://doi.org/10.1016/j.msea.2020.140158
Lasalmonie, A., & Strudel, J. L. (1986). Influence of grain size on the mechanical behaviour of some high strength materials. Journal of Materials Science, 21(6), 1837–1852. https://doi.org/10.1007/BF00547918
Lugo, N., Llorca, N., Cabrera, J. M., & Horita, Z. (2008). Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion. Materials Science and Engineering: A, 477(1–2), 366–371. https://doi.org/10.1016/j.msea.2007.05.083
Maltais, A., Dubé, D., Fiset, M., Laroche, G., & Turgeon, S. (2004). Improvements in the metallography of as-cast AZ91 alloy. Materials Characterization, 52(2), 103–119. https://doi.org/10.1016/j.matchar.2004.04.002
Mizelli-Ojdanic, A., Horky, J., Mingler, B., Fanetti, M., Gardonio, S., Valant, M., Sulkowski, B., Schafler, E., Orlov, D., & Zehetbauer, M. J. (2021). Enhancing the mechanical properties of biodegradable mg alloys processed by warm HPT and thermal treatments. Materials, 14(21). https://doi.org/10.3390/ma14216399
Peng, J., Wong, L. N. Y., & Teh, C. I. (2017). Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks. Journal of Geophysical Research: Solid Earth, 122(2), 1054–1073. https://doi.org/10.1002/2016JB013469
Rosalie, J. M., & Pauw, B. R. (2014). Form-free size distributions from complementary stereological TEM/SAXS on precipitates in a Mg-Zn alloy. Acta Materialia, 66, 150–162. https://doi.org/10.1016/j.actamat.2013.11.029
Rosenthal, I., Stern, A., & Frage, N. (2014). Microstructure and mechanical properties of AlSi10Mg parts produced by the laser beam additive manufacturing (AM) technology. Metallography, Microstructure, and Analysis, 3(6), 448–453. https://doi.org/10.1007/s13632-014-0168-y
Ross, R. B. (2013). Metallic materials specification handbook (4th Editio). Springer Science & Business Media. https://doi.org/10.1007/978-1-4615-3482-2
Shirooyeh, M., Xu, J., & Langdon, T. G. (2014). Microhardness evolution and mechanical characteristics of commercial purity titanium processed by high-pressure torsion. Materials Science and Engineering A, 614, 223–231. https://doi.org/10.1016/j.msea.2014.07.030
Su, Q., Xu, J., Li, Y., Yoon, J. I., Shan, D., Guo, B., & Kim, H. S. (2018). Microstructural evolution and mechanical properties in superlight Mg-Li alloy processed by high-pressure torsion. Materials, 11(4). https://doi.org/10.3390/ma11040598
Sun, W. T., Qiao, X. G., Zheng, M. Y., He, Y., Hu, N., Xu, C., Gao, N., & Starink, M. J. (2018). Exceptional grain refinement in a Mg alloy during high pressure torsion due to rare earth containing nanosized precipitates. Materials Science and Engineering A, 728(May), 115–123. https://doi.org/10.1016/j.msea.2018.05.021
Tasan, C. C., Diehl, M., Yan, D., Bechtold, M., Roters, F., Schemmann, L., Zheng, C., Peranio, N., Ponge, D., Koyama, M., Tsuzaki, K., & Raabe, D. (2015). An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design. Annual Review of Materials Research, 45, 391–431. https://doi.org/10.1146/annurev-matsci-070214-021103
Václavová, K., Stráský, J., Polyakova, V., Stráská, J., Nejezchlebová, J., Seiner, H., Semenova, I., & Janeček, M. (2017). Microhardness and microstructure evolution of ultra-fine grained Ti-15Mo and TIMETAL LCB alloys prepared by high pressure torsion. Materials Science and Engineering A, 682(November 2016), 220–228. https://doi.org/10.1016/j.msea.2016.11.038
Valiev, R. Z., Islamgaliev, R. K., & Alexandrov, I. V. (2000). Bulk nanostructured materials from severe plastic deformation. In Progress in Materials Science (Vol. 45, Issue 2). https://doi.org/10.1016/S0079-6425(99)00007-9
Wang, M. Y., Xu, Y. J., Jing, T., Peng, G. Y., Fu, Y. N., & Chawla, N. (2012). Growth orientations and morphologies of α-Mg dendrites in Mg-Zn alloys. Scripta Materialia, 67(7–8), 629–632. https://doi.org/10.1016/j.scriptamat.2012.07.031
Wei, Q., Zhang, H. T., Schuster, B. E., Ramesh, K. T., Valiev, R. Z., Kecskes, L. J., Dowding, R. J., Magness, L., & Cho, K. (2006). Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion. Acta Materialia, 54(15), 4079–4089. https://doi.org/10.1016/j.actamat.2006.05.005
Xu, C., Horita, Z., & Langdon, T. G. (2008). The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion. Acta Materialia, 56(18), 5168–5176. https://doi.org/10.1016/j.actamat.2008.06.036
Yu, H., Xin, Y., Wang, M., & Liu, Q. (2018). Hall-Petch relationship in Mg alloys: A review. Journal of Materials Science and Technology, 34(2), 248–256. https://doi.org/10.1016/j.jmst.2017.07.022
Zener, C., & Hollomon, J. (1946). Problems in non-elastic deformation. Journal of Applied Physics, 17(2), 69–82. https://doi.org/https://doi.org/10.1063/1.1707696
Zhang, H. W., Subhash, G., Jing, X. N., Kecskes, L. J., & Dowding, R. J. (2006). Evaluation of hardness-yield strength relationships for bulk metallic glasses. Philosophical Magazine Letters, 86(5), 333–345. https://doi.org/10.1080/09500830600788935
Zhilyaev, A. P., & Langdon, T. G. (2008). Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science, 53(6), 893–979. https://doi.org/10.1016/j.pmatsci.2008.03.002
Zhilyaev, A. P., McNelley, T. R., & Langdon, T. G. (2007). Evolution of microstructure and microtexture in fcc metals during high-pressure torsion. Journal of Materials Science, 42(5), 1517–1528. https://doi.org/10.1007/s10853-006-0628-0
Zhu, Y. T., Lowe, T. C., & Langdon, T. G. (2004). Performance and applications of nanostructured materials produced by severe plastic deformation. Scripta Materialia, 51(8 SPEC. ISS.), 825–830. https://doi.org/10.1016/j.scriptamat.2004.05.006